Untitled

 avatar
unknown
plain_text
a month ago
5.6 kB
1
Indexable
Let me help you understand how to solve this binary search tree serialization problem with a clear explanation and implementation in Java.

The key insight here is that since we're dealing with a Binary Search Tree (BST), we can take advantage of its properties to create a more compact serialization than we would need for a general binary tree. Let's break this down step by step.



```java
// Definition for a binary tree node
class TreeNode {
    int val;
    TreeNode left;
    TreeNode right;
    TreeNode(int x) { val = x; }
}

class Codec {
    // Encodes a BST to a single string
    public String serialize(TreeNode root) {
        // For an empty tree, return an empty string
        if (root == null) return "";
        
        // Use StringBuilder for efficient string concatenation
        StringBuilder sb = new StringBuilder();
        serializeHelper(root, sb);
        
        // Remove the last comma and return
        if (sb.length() > 0) {
            sb.setLength(sb.length() - 1);
        }
        return sb.toString();
    }
    
    // Helper method for preorder traversal serialization
    private void serializeHelper(TreeNode node, StringBuilder sb) {
        if (node == null) return;
        
        // Append current node's value and a comma
        sb.append(node.val).append(",");
        
        // Recursively process left and right subtrees
        serializeHelper(node.left, sb);
        serializeHelper(node.right, sb);
    }
    
    // Decodes encoded data to tree
    public TreeNode deserialize(String data) {
        // Handle empty string case
        if (data.isEmpty()) return null;
        
        // Split the string into array of values
        String[] values = data.split(",");
        return deserializeHelper(values, 0, Integer.MAX_VALUE, new int[]{0});
    }
    
    // Helper method for deserializing values into BST
    private TreeNode deserializeHelper(String[] values, int min, int max, int[] index) {
        // If we've processed all values or current value doesn't fit BST property
        if (index[0] >= values.length) return null;
        
        int val = Integer.parseInt(values[index[0]]);
        if (val < min || val > max) return null;
        
        // Create current node and increment index
        TreeNode node = new TreeNode(val);
        index[0]++;
        
        // Recursively construct left and right subtrees
        // Left subtree values must be less than current value
        node.left = deserializeHelper(values, min, val, index);
        // Right subtree values must be greater than current value
        node.right = deserializeHelper(values, val, max, index);
        
        return node;
    }
}

```

Let's understand the key insights and design decisions:

1. **BST Property Advantage**
   - In a BST, all values in the left subtree are less than the root, and all values in the right subtree are greater than the root
   - This means we don't need to explicitly store null values like we would for a general binary tree
   - We can reconstruct the tree structure using just the values and BST properties

2. **Serialization Strategy**
   - We use preorder traversal (root, left, right) to serialize the tree
   - We only store actual node values, separated by commas
   - The preorder traversal ensures we process parent nodes before their children
   - We don't need to store any structural information because the BST property will help us rebuild the tree

3. **Deserialization Strategy**
   - We use the BST property to determine where each value should go
   - For each value, we maintain a valid range (min, max) in which it must fall
   - If a value is outside its valid range, it belongs to a different subtree
   - We use a single index array to keep track of our position in the values array across recursive calls

4. **Space Optimization**
   - Our serialized string only contains node values and commas
   - No extra characters are needed for structure
   - For n nodes, we use approximately n-1 commas and n values
   - This is more compact than serializing a general binary tree, which would need to encode null children

5. **Time Complexity**
   - Serialization: O(n) where n is the number of nodes
   - Deserialization: O(n) as we process each value exactly once
   - Space Complexity: O(n) for both operations

6. **Implementation Details**
   - Used StringBuilder for efficient string concatenation during serialization
   - Used array of size 1 for index in deserialization to maintain state across recursive calls
   - Split input string on commas to get individual values
   - Used Integer.MAX_VALUE and Integer.MIN_VALUE for initial range bounds

Let's see how it works with an example:
```
Input BST:
     5
    / \
   3   7
  / \
 2   4

Serialized string: "5,3,2,4,7"

During deserialization:
1. First value 5: becomes root (valid range: -∞ to ∞)
2. Value 3: goes left of 5 (valid range: -∞ to 5)
3. Value 2: goes left of 3 (valid range: -∞ to 3)
4. Value 4: goes right of 3 (valid range: 3 to 5)
5. Value 7: goes right of 5 (valid range: 5 to ∞)
```

This solution achieves the goal of creating a compact serialization while maintaining the ability to perfectly reconstruct the original BST. The BST property allows us to use less space than we would need for a general binary tree, making the solution both efficient and elegant.

Would you like me to explain any particular part in more detail or show how it handles specific edge cases?
Editor is loading...
Leave a Comment