Untitled
unknown
plain_text
a year ago
2.3 kB
4
Indexable
import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import DepthwiseConv2D, Flatten, Dense from PIL import Image, ImageOps import numpy as np from os import system, name from ecapture import ecapture as ec ec.capture(0,"your image","thing.jpg") def clear(): _= system('cls') # Disable scientific notation for clarity np.set_printoptions(suppress=True) # Load the labels with open("labels.txt", "r") as f: class_names = f.readlines() # Replace this with the path to your image image_path = "thing.jpg" # Load and preprocess the image image = Image.open(image_path).convert("RGB") image = ImageOps.fit(image, (224, 224), Image.LANCZOS) image_array = np.asarray(image) normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1 data = np.expand_dims(normalized_image_array, axis=0) # Define the model structure model = Sequential([ DepthwiseConv2D(kernel_size=(3, 3), strides=(1, 1), padding='same', depth_multiplier=1, activation='relu', use_bias=False, input_shape=(224, 224, 3)), Flatten(), Dense(len(class_names), activation='softmax') ]) # Load weights into the model try: model.load_weights("keras_Model.h5", by_name=True) except ValueError as e: print("Error loading weights:", e) prediction = model.predict(data) index = np.argmax(prediction) class_name = class_names[index].strip() confidence_score = prediction[0][index] dots = 0 while not confidence_score >= 0.9: if dots == 0: print("loading") if dots == 1: print("loading.") if dots == 2: print("loading..") if dots == 3: print("loading...") dots = -1 model = Sequential([ DepthwiseConv2D(kernel_size=(3, 3), strides=(1, 1), padding='same', depth_multiplier=1, activation='relu', use_bias=False, input_shape=(224, 224, 3)), Flatten(), Dense(len(class_names), activation='softmax') ]) prediction = model.predict(data) index = np.argmax(prediction) class_name = class_names[index].strip() confidence_score = prediction[0][index] dots = dots+1 clear() print("Confidence Score:", confidence_score) print("Class:", class_name)
Editor is loading...
Leave a Comment