Untitled

 avatar
unknown
plain_text
6 months ago
12 kB
3
Indexable
// app.js
const express = require('express');
const { createCanvas, Image } = require('canvas');
const multer = require('multer');
const path = require('path');
const fs = require('fs');

const app = express();
const upload = multer({ dest: 'uploads/' });

app.use(express.static('public'));

class PixelArtEngine {
    constructor(width = 512, height = 512) {
        this.sourceCanvas = createCanvas(width, height);
        this.pixelCanvas = createCanvas(width, height);
        this.sourceCtx = this.sourceCanvas.getContext('2d');
        this.pixelCtx = this.pixelCanvas.getContext('2d');
    }

    async loadImage(imagePath) {
        return new Promise((resolve, reject) => {
            const img = new Image();
            img.onload = () => {
                const scale = Math.min(512 / img.width, 512 / img.height);
                const width = Math.floor(img.width * scale);
                const height = Math.floor(img.height * scale);
                const x = Math.floor((512 - width) / 2);
                const y = Math.floor((512 - height) / 2);

                this.sourceCtx.fillStyle = '#FFFFFF';
                this.sourceCtx.fillRect(0, 0, 512, 512);
                this.sourceCtx.drawImage(img, x, y, width, height);
                resolve();
            };
            img.onerror = reject;
            img.src = imagePath;
        });
    }

    async processImage(options) {
        const pixelSize = options.pixelSize || 8;
        const colorCount = options.colorCount || 16;
        const edgeSharpness = options.edgeSharpness || 0.7;
        const detailLevel = options.detailLevel || 0.5;
        const contrast = options.contrast || 0.5;

        const sourceData = this.sourceCtx.getImageData(0, 0, 512, 512);
        const processedColors = await this.processColors(sourceData, colorCount, contrast);
        const edges = this.detectEdges(processedColors, edgeSharpness);
        const pixelated = this.pixelate(processedColors, edges, pixelSize, detailLevel);
        
        this.pixelCtx.putImageData(pixelated, 0, 0);
        return this.pixelCanvas.toBuffer();
    }

    async processColors(imageData, colorCount, contrast) {
        const pixels = [];
        const data = imageData.data;
        
        for (let i = 0; i < data.length; i += 4) {
            const r = this.adjustContrast(data[i], contrast);
            const g = this.adjustContrast(data[i + 1], contrast);
            const b = this.adjustContrast(data[i + 2], contrast);
            pixels.push([r, g, b]);
        }

        const palette = await this.kMeans(pixels, colorCount);
        
        const result = new ImageData(imageData.width, imageData.height);
        for (let i = 0; i < data.length; i += 4) {
            const pixel = [data[i], data[i + 1], data[i + 2]];
            const newColor = this.findNearestColor(pixel, palette);
            result.data[i] = newColor[0];
            result.data[i + 1] = newColor[1];
            result.data[i + 2] = newColor[2];
            result.data[i + 3] = 255;
        }

        return result;
    }

    adjustContrast(value, contrast) {
        return Math.min(255, Math.max(0, Math.round(
            ((value / 255 - 0.5) * (contrast + 1) + 0.5) * 255
        )));
    }

    async kMeans(pixels, k) {
        const colorMap = new Map();
        pixels.forEach(pixel => {
            const key = pixel.join(',');
            colorMap.set(key, (colorMap.get(key) || 0) + 1);
        });

        const uniqueColors = Array.from(colorMap.entries())
            .sort((a, b) => b[1] - a[1])
            .map(([color]) => color.split(',').map(Number));

        const centroids = [uniqueColors[0]];
        while (centroids.length < k && uniqueColors.length > centroids.length) {
            let maxDistance = -1;
            let farthestColor = null;

            for (const color of uniqueColors) {
                if (centroids.some(c => this.arraysEqual(c, color))) continue;
                
                let minDistance = Math.min(...centroids.map(c => this.colorDistance(color, c)));
                const frequency = colorMap.get(color.join(','));
                const weightedDistance = minDistance * Math.log1p(frequency);

                if (weightedDistance > maxDistance) {
                    maxDistance = weightedDistance;
                    farthestColor = color;
                }
            }

            if (farthestColor) centroids.push(farthestColor);
        }

        let changed = true;
        let iterations = 0;
        while (changed && iterations < 50) {
            changed = false;
            const clusters = Array(k).fill().map(() => []);
            
            uniqueColors.forEach(color => {
                const frequency = colorMap.get(color.join(','));
                const closestCentroidIndex = this.findClosestCentroidIndex(color, centroids);
                for (let i = 0; i < frequency; i++) {
                    clusters[closestCentroidIndex].push(color);
                }
            });

            for (let i = 0; i < k; i++) {
                if (clusters[i].length > 0) {
                    const newCentroid = this.calculateCentroid(clusters[i]);
                    if (!this.arraysEqual(newCentroid, centroids[i])) {
                        centroids[i] = newCentroid;
                        changed = true;
                    }
                }
            }
            iterations++;
        }

        return this.optimizePalette(centroids);
    }

    optimizePalette(colors) {
        const hasBlack = colors.some(c => c.every(v => v < 32));
        const hasWhite = colors.some(c => c.every(v => v > 223));
        
        if (!hasBlack) colors[colors.length - 1] = [0, 0, 0];
        if (!hasWhite) colors[colors.length - 2] = [255, 255, 255];

        return colors.sort((a, b) => {
            const lumA = (a[0] * 299 + a[1] * 587 + a[2] * 114) / 1000;
            const lumB = (b[0] * 299 + b[1] * 587 + b[2] * 114) / 1000;
            return lumA - lumB;
        });
    }

    pixelate(imageData, edges, pixelSize, detailLevel) {
        const result = new ImageData(imageData.width, imageData.height);
        const data = imageData.data;
        const width = imageData.width;
        
        for (let y = 0; y < imageData.height; y += pixelSize) {
            for (let x = 0; x < width; x += pixelSize) {
                const blockColors = [];
                const edgeColors = [];
                
                for (let py = 0; py < pixelSize && y + py < imageData.height; py++) {
                    for (let px = 0; px < pixelSize && x + px < width; px++) {
                        const idx = ((y + py) * width + (x + px)) * 4;
                        const color = [data[idx], data[idx + 1], data[idx + 2]];
                        
                        if (edges[(y + py) * width + (x + px)] > 128) {
                            edgeColors.push(color);
                        }
                        blockColors.push(color);
                    }
                }

                const finalColor = edgeColors.length > 0 
                    ? this.getMostSignificantColor(edgeColors, blockColors, detailLevel)
                    : this.getDominantColor(blockColors);

                for (let py = 0; py < pixelSize && y + py < imageData.height; py++) {
                    for (let px = 0; px < pixelSize && x + px < width; px++) {
                        const idx = ((y + py) * width + (x + px)) * 4;
                        result.data[idx] = finalColor[0];
                        result.data[idx + 1] = finalColor[1];
                        result.data[idx + 2] = finalColor[2];
                        result.data[idx + 3] = 255;
                    }
                }
            }
        }

        return result;
    }

    detectEdges(imageData, threshold) {
        const data = imageData.data;
        const width = imageData.width;
        const height = imageData.height;
        const edges = new Uint8Array(width * height);

        for (let y = 1; y < height - 1; y++) {
            for (let x = 1; x < width - 1; x++) {
                let gx = 0, gy = 0;

                for (let ky = -1; ky <= 1; ky++) {
                    for (let kx = -1; kx <= 1; kx++) {
                        const idx = ((y + ky) * width + (x + kx)) * 4;
                        const val = (data[idx] + data[idx + 1] + data[idx + 2]) / 3;
                        gx += val * this.sobelX(kx + 1, ky + 1);
                        gy += val * this.sobelY(kx + 1, ky + 1);
                    }
                }

                const magnitude = Math.sqrt(gx * gx + gy * gy) * threshold;
                edges[y * width + x] = magnitude > 128 ? 255 : 0;
            }
        }

        return edges;
    }

    getMostSignificantColor(edgeColors, allColors, detailLevel) {
        const edgeColor = this.getDominantColor(edgeColors);
        const dominantColor = this.getDominantColor(allColors);
        
        return [
            Math.round(edgeColor[0] * detailLevel + dominantColor[0] * (1 - detailLevel)),
            Math.round(edgeColor[1] * detailLevel + dominantColor[1] * (1 - detailLevel)),
            Math.round(edgeColor[2] * detailLevel + dominantColor[2] * (1 - detailLevel))
        ];
    }

    findClosestCentroidIndex(color, centroids) {
        let minDist = Infinity;
        let index = 0;
        centroids.forEach((centroid, i) => {
            const dist = this.colorDistance(color, centroid);
            if (dist < minDist) {
                minDist = dist;
                index = i;
            }
        });
        return index;
    }

    calculateCentroid(cluster) {
        const sum = [0, 0, 0];
        cluster.forEach(color => {
            sum[0] += color[0];
            sum[1] += color[1];
            sum[2] += color[2];
        });
        return sum.map(v => Math.round(v / cluster.length));
    }

    colorDistance(c1, c2) {
        const rmean = (c1[0] + c2[0]) / 2;
        const r = c1[0] - c2[0];
        const g = c1[1] - c2[1];
        const b = c1[2] - c2[2];
        return Math.sqrt((2 + rmean/256) * r*r + 4 * g*g + (2 + (255-rmean)/256) * b*b);
    }

    getDominantColor(colors) {
        const colorMap = new Map();
        colors.forEach(color => {
            const key = color.join(',');
            colorMap.set(key, (colorMap.get(key) || 0) + 1);
        });

        let maxCount = 0;
        let dominant = colors[0];
        for (const [key, count] of colorMap.entries()) {
            if (count > maxCount) {
                maxCount = count;
                dominant = key.split(',').map(Number);
            }
        }
        return dominant;
    }

    findNearestColor(color, palette) {
        return palette.reduce((nearest, current) => {
            const currentDist = this.colorDistance(color, current);
            const nearestDist = this.colorDistance(color, nearest);
            return currentDist < nearestDist ? current : nearest;
        }, palette[0]);
    }

    arraysEqual(a, b) {
        return a.length === b.length && a.every((v, i) => v === b[i]);
    }

    sobelX(x, y) {
        return [[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]][y][x];
    }

    sobelY(x, y) {
        return [[-1, -2, -1], [0, 0, 0], [1, 2, 1]][y][x];
    }
}

app.post('/process-image', upload.single('image'), async (req, res) => {
    try {
        if (!req.file) {
            return res.status(400).json({ error: 'No image file provided' });
        }

        const engine = new PixelArtEngine();
        await engine.loadImage(req.file.path);

        const options = {
            pixelSize: parseInt(req.body.pixelSize) || 8,
            colorCount: parseInt(req.body.colorCount) || 16,
            edgeSharpness: parseFloat(req.body.edgeSharpness) || 0.7,
            detailLevel: parseFloat(req.body.detailLevel) || 0.5,
            contrast: parseFloat(req.body.contrast) || 0.5
        };

        const processedImageBuffer = await engine.processImage(options);

        fs.unlinkSync(req.file.path);

        res.set('Content-Type', 'image/png');
        res.send(processedImageBuffer);
    } catch (error) {
        console.error(error);
        res.status(500).json({ error: 'Image processing failed' });
    }
});

app.get('/', (req, res) => {
    res.sendFile(path.join(__dirname, 'public', 'index.html'));
});

const PORT = process.env.PORT || 3000;
app.listen(PORT, () => {
    console.log(`Server running on port ${PORT}`);
});
Editor is loading...
Leave a Comment