Untitled
unknown
plain_text
2 years ago
6.6 kB
15
Indexable
import pandas as pd
import tkinter as tk
from tkinter import filedialog
def display_information():
# Display text prompt for required columns
info_text.config(state=tk.NORMAL)
info_text.delete('1.0', tk.END)
info_text.insert(tk.END, "Please make sure the selected Excel sheet 1 has the following columns:\n"
"1. Software Features\n"
"2. Requirement(s)\n"
"3. Specification(s)\n\n"
"The second Excel sheet 2 should have columns:\n"
"- Column1\n"
"- Column2\n\n"
"The third Excel sheet 3 should have columns:\n"
"- Software Features\n"
"- Column2\n"
"- Column3")
info_text.config(state=tk.DISABLED)
def process_files():
# Prompt to choose the first Excel sheet
path_to_sheet1_excel = filedialog.askopenfilename(
title="Step 1: Choose Excel Sheet with Columns",
filetypes=[("Excel Files", "*.xlsx;*.xls")]
)
# Load data from the first Excel sheet
df_sheet1 = pd.read_excel(path_to_sheet1_excel)
# Prompt to choose the second Excel sheet
path_to_sheet2_excel = filedialog.askopenfilename(
title="Step 2: Choose Second Excel Sheet with Columns Column1 and Column2",
filetypes=[("Excel Files", "*.xlsx;*.xls")]
)
# Load data from the second Excel sheet
df_sheet2 = pd.read_excel(path_to_sheet2_excel)
# Prompt to choose the third Excel sheet
path_to_sheet3_excel = filedialog.askopenfilename(
title="Step 3: Choose Third Excel Sheet with Columns Software Features, Column2, and Column3",
filetypes=[("Excel Files", "*.xlsx;*.xls")]
)
# Load data from the third Excel sheet
df_sheet3 = pd.read_excel(path_to_sheet3_excel)
# If "Concated" column doesn't exist in the second sheet, create it
if 'Concated' not in df_sheet2.columns:
# Concatenate specified columns and create "Concated" column
df_sheet2['Concated'] = df_sheet2['Column1'] + '|' + df_sheet2['Column2']
# If "Concated" column doesn't exist in the third sheet, create it
if 'Concated' not in df_sheet3.columns:
# Concatenate specified columns and create "Concated" column
df_sheet3['Concated'] = df_sheet3['Software Features'] + '|' + df_sheet3['Column2'] + '|' + df_sheet3['Column3']
# Extract Concated filters from "Concated" column of Sheet2
concated_filters_sheet2 = df_sheet2['Concated'].tolist()
# Extract Concated filters from "Concated" column of Sheet3
concated_filters_sheet3 = df_sheet3['Concated'].tolist()
# Create an empty dataframe to store the results
result_df = pd.DataFrame(columns=['Sheet', 'Column1', 'Column2', 'Column3', 'Concated', 'Features'])
# Process the second sheet
for concated_filter in concated_filters_sheet2:
# Clean the Concated filter to remove non-printable characters
cleaned_filter = ''.join(char for char in concated_filter if char.isprintable())
# Split the cleaned Concated filter
column1, column2 = cleaned_filter.split('|')
# Filter based on Column1 and Column2 in the first sheet
filter_condition = (df_sheet1['Requirement(s)'].str.contains(column1)) & (df_sheet1['Specification(s)'].str.contains(column2))
filtered_df = df_sheet1[filter_condition].copy()
# Get unique features for the Concated value
features = ', '.join(filtered_df['Software Features'].unique())
# Append to the result dataframe
result_df = pd.concat([result_df, pd.DataFrame({'Sheet': ['Sheet2'],
'Column1': [column1],
'Column2': [column2],
'Column3': ['N/A'],
'Concated': [concated_filter],
'Features': [features]})], ignore_index=True)
# Process the third sheet
for concated_filter in concated_filters_sheet3:
# Clean the Concated filter to remove non-printable characters
cleaned_filter = ''.join(char for char in concated_filter if char.isprintable())
# Split the cleaned Concated filter
software_feature, column2, column3 = cleaned_filter.split('|')
# Filter based on Software Feature, Column2, and Column3 in the third sheet
filter_condition = (df_sheet3['Software Features'].str.contains(software_feature)) & (df_sheet3['Column2'].str.contains(column2)) & (df_sheet3['Column3'].str.contains(column3))
filtered_df = df_sheet3[filter_condition].copy()
# Get unique features for the Concated value
features = ', '.join(filtered_df['Software Features'].unique())
# Append to the result dataframe
result_df = pd.concat([result_df, pd.DataFrame({'Sheet': ['Sheet3'],
'Column1': ['N/A'],
'Column2': [column2],
'Column3': [column3],
'Concated': [concated_filter],
'Features': [features]})], ignore_index=True)
# Display the resulting dataframe
result_text.config(state=tk.NORMAL)
result_text.delete('1.0', tk.END)
result_text.insert(tk.END, result_df.to_string(index=False))
result_text.config(state=tk.DISABLED)
# Save result to Excel
result_df.to_excel('output.xlsx', index=False)
# Create the main application window
app = tk.Tk()
app.title("Excel Sheet Processor")
# Display information text
info_text = tk.Text(app, height=10, width=80, state=tk.DISABLED)
info_text.pack(padx=10, pady=10)
display_information()
# Create buttons and text widget
process_button = tk.Button(app, text="Process Files", command=process_files)
result_text = tk.Text(app, height=10, width=80, state=tk.DISABLED)
# Pack buttons and text widget
process_button.pack(pady=10)
result_text.pack(padx=10, pady=10)
# Start the main loop
app.mainloop()
Editor is loading...
Leave a Comment