KABALAJI
unknown
matlab
2 years ago
3.6 kB
4
Indexable
% TANGENT clc clear all close all syms x y=input('enter the function in terms of x:') x1=input('enter the tangent value:') ezplot(y,[x1-2,x1+2]) hold on yx=diff(y,x) slope=subs(yx,x,x1) y1=subs(y,x,x1) plot(x1,y1) tangent_line=slope*(x-x1)+y1 h=ezplot(tangent_line,[x1-2,x1+2]) set(h,'color','r*') %% %EXTREMA clc clear all close all syms x real y=input('enter the function:') yx=diff(y,x) c=solve(yx) cmin=min(double(c)) cmax=max(double(c)) ezplot(y,[cmin-2,cmax+2]) hold on yxx=diff(yx,x) for i =1:1:size(c) T1=subs(yxx,x,c(i)) T2=subs(y,x,c(i)) if (double(T1)==0) sprintf('It has a point of inflexion is %d',double(c(i))) else if(double(T1)<0) sprintf('The maximum value of function is %d',double(c(i))) sprintf('The value of function is %d',double(T2)) else sprintf('The minimum value of the function is %d',double(c(i))) sprintf('The value of the function is %d',double(T2)) end end plot(double(c(i)),double(T2),'r*','markersize',20) end %% INTEGRALS clc clear all format compact syms x f=input('enter a function f(x):') a=input('enter the lower limit:') b=input('enter the upper limit:') n=input('enter the number of intervals:') value=0 dx=(b-a)/n for k=1:n c=a+k*dx d=subs(f,x,c) values=value+d end value=dx*value z=int(f,a,b) ezplot(f,[a b]) figure rsums(f,a,b) %% AREA UNDER CURVES clc clear all format compact syms x y1=input('enter the upper curve as a function of x :') y2=input('enter the lower curve as a function of x :') t=solve(y1,-y2) t=double(t) A=int(y1-y2,t(1),t(2)) D=[t(1)-0.2 t(2)+0.2]; ezl=ezplot(y1,D); set(ezl,'color','r') hold on ez2=ezplot(y2,D); set(ez2,'color','g') xv=linspace(t(1),t(2)) y1v=subs(y1,x,xv); y2v=subs(y2,x,xv); x=[xv,xv]; y=[y1v,y2v]; fill(x,y,'b') %% LAGRANGE clc clear all format compact syms x y lam real f=input('enter the function f(x,y)'); g=input('enter constraint g(x,y)'); F=f-lam*g; Fd=jacobian(F, [x y lam]) [ax,ay,alam]=solve(Fd,x,y,lam) ax=double(ax) ay=double(ay) T=subs(f,{x,y},{ax,ay}) T=double(T) epx=3 epy=3 for i=1 :length(T) figure D=[ax(i)-epx ax(i)+epx ay(i)-epy ay(i)+epy] fprintf('the critical point (x,y) is (%1.3f, %1.3f).',ax(i),ay(i)) fprintf('the value of the function is %1.3f\n',T(i)) ezcontour(f,D,300) hold on h=ezplot(g,D) set(h,'color',[1.0,0.7,0.9]) plot(ax(i),ay(i),'k.','markersize',40) end TT=sort(T); f_min=TT(1) f_max=TT(end) %% VOLUME UNDER SURFAACES clc clear all format compact syms x y z Ivalue=int(int((x+y)/4,y,x/2,x),x,1,2) viewSolid(z,0+0*x+0*y,(x+y)/4,y,x/2,x,x,1,2) %% CURL D AND G clc clear all format compact syms x y f=input('Enter the function f(x,y): ') grad=gradient(f,[x,y]) P(x,y)=grad(1) Q(x,y)=grad(2) x=linspace(-2,2,10); y=x; [X,Y]=meshgrid(x,y) U=P(X,Y); V=Q(X,Y); quiver(X,Y,U,V,1) axis on xlabel ('x'); ylabel('y') hold on fcontour(f,[-2,2]) %% GREENS THEOREM clc clear all format compact syms x y t F=input('Enter the vector function M(x,y)i+N(x,y)j in the form [M N]: ') M(x,y)=F(1); N(x,y)=F(2); r=input('Enter the parametric form of the curve C as[r1(t) r2(t)]:' ) r1=r(1); r2=r(2); P=M(r1,r2); Q=N(r1,r2); dr=diff(r,t); F1=sum([P,Q].*dr) T=input('Enter the limits of integration for t [t1, t2]:' ) t1=T(1); t2=T(2); LHS=int(F1,t,t1,t2) yL=input('Enter the limits for y in terms of X:[y1,y2]:' ) xL=input('Enter the limits for x :[x1,x2]: ') y1=yL(1); y2=yL(2); x1=xL(1); x2=xL(2); F2=diff(N,x)-diff(M,y) RHS=int(int(F2,y,y1,y2),x,x1,x2) if(LHS==RHS) disp('LHS of greens theorem') disp(LHS) disp('RHS of greens theorem') disp(RHS) disp('Hence, Greens theorem is verified.') end
Editor is loading...