Untitled

mail@pastecode.io avatar
unknown
plain_text
a year ago
2.9 kB
3
Indexable
def task(**kwargs):
    try:
        task_id = kwargs['task_id']
        input_images_url = f"{TASKS_SERVER_URL}/api/task/{task_id}/node/cropping/file/cropped.nii.gz"
        # input_images_url = kwargs['input_images_url']
        output_file_url = f"{TASKS_SERVER_URL}/api/task/{task_id}/node/preprocessing/file"
        # output_file_url = kwargs['output_images_url']
    except KeyError as err:
        logging.error(f'KeyError: {err}')
        return False

    # download input images and save to tempdir
    try:
        tempdir = tempfile.TemporaryDirectory()
        res = requests.get(input_images_url)
        res.raise_for_status()
        with open(os.path.join(tempdir.name, 'input_images.nii.gz'), 'wb') as f:
            f.write(res.content)
        input_images_path = os.path.join(tempdir.name, 'input_images.nii.gz')
    except requests.exceptions.HTTPError as err:
        logging.error(f'HTTPError: {err}')
        return False
    
    logging.info("start preprocessing on %s",datetime.datetime.now().isoformat())
    # preprocess images
    try:
        config_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'liver_duplicate_nnunet_config.json')
        if not os.path.exists(config_file):
            raise FileNotFoundError(f'Config file {config_file} not found')
        liver_preprocessing = LiverPreprocessing(config_file)
        preprocessed = liver_preprocessing([input_images_path,input_images_path])
    except Exception as err:
        logging.error(f'Error: {err}')
        return False
    logging.info("end preprocessing%s",datetime.datetime.now().isoformat()) 
    # save preprocessed images to tempdir
    try:
        preprocessed_data_path = os.path.join(tempdir.name, 'preprocessed.npy')
        np.save(preprocessed_data_path, preprocessed['data'])
        preprocessed_properties_path = os.path.join(tempdir.name, 'preprocessed_properties.json')
        with open(preprocessed_properties_path, 'w') as f:
            json.dump(preprocessed['data_properites'], f)
    except Exception as err:
        logging.error(f'Error: {err}')
        return False
    
    # upload preprocessed output 
    try:
        with open(preprocessed_data_path, 'rb') as f:
            res = requests.post(
                output_file_url,
                files={'filename': (None, 'preprocessed.npy'),'file': f}
            )
        res.raise_for_status()
        with open(preprocessed_properties_path, 'rb') as f:
            res = requests.post(
                output_file_url,
                files={'filename': (None, 'preprocessed_properties.json'),'file': f}
            )
        res.raise_for_status()
    except requests.exceptions.HTTPError as err:
        logging.error(f'HTTPError: {err}')
        return False
    
    tempdir.cleanup()
    
    return True