Untitled
user_9363972
python
a year ago
1.2 kB
9
Indexable
Never
import pandas as pd import seaborn as sb import numpy as np iris_data = pd.read_csv("iris.data") colums_name = ['Sepal length', 'Sepal width', 'Petal length', 'Petal width', 'class'] iris_data.columns = colums_name # iris_data.head() # iris_data.isnull().sum() # iris_data.value_counts("class") # sb.countplot(x="class", data = iris_data) fig = sb.scatterplot(x="Sepal length", y="Sepal width", hue="class", data=iris_data) fig.set(title="Sepal Length and Width") features = iris_data.iloc[:, 0:4] label = iris_data.iloc[:, 4] print("Features : ") print(features) print("Label : ") print(label) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( features, label, test_size=0.2, random_state=0) print('Number of train data' ,X_train.shape[0]) print('Number of data test', y_test.shape[0]) from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors=8, weights="uniform") knn.fit(X_train, y_train) train_acc = knn.score(X_train, y_train) print("The accuracy Of KNN classifier on training data is : {:.3f}".format(train_acc))