Untitled
unknown
plain_text
3 years ago
2.9 kB
3
Indexable
dados <- read.delim("Trabalho10_Dados.txt", header= FALSE, sep="", ) dados <- dados[,2:13] names(dados)<- c("Age", "Height", "Sex", "Survival", "Shock.Type", "Systolic.Pressure", "Mean.Arterial.Pressure", "Heart.Rate", "Diastolic.Pressure", "Mean.Central.Venous", "Body.Surface.Index", "Cardiac.Index") rows <- nrow(dados) even_rows <- seq_len(rows) %% 2 dados_inicial <- dados[even_rows == 1,] X <- cbind(1,data.matrix(dados_inicial)) qualitativas <- c("Sex", "Survival", "Shock.Type") #for (i in names(dados_inicial)){ # if(!(i %in% qualitativas)) { # print(i) # outliers <- boxplot(names(i ~ Shock.Type, dados_inicial)$out #dados_inicial1 <- dados_inicial[!(dados_inicial$i %in% outliers), ] #} #} #no final? par(mfrow = c(1, ncol(dados_inicial))) lapply(1:ncol(dados_inicial), function(i) boxplot(dados_inicial[i])$out) #for (i in 1:ncol(X)){ #X[,i]<- X[!X[,i] %in% boxplot.stats(X)$out]} #sex x3 <- X[,4] x3[x3 == 2] <- 0 x3 #survival x4 <- X[,5] x4[x4 == 3] <- 0 x3 #shock x5_2 <- X[,6] x5_2[x5_2 != 2] <- 0 x5_2[x5_2 == 2] <- 1 x5_2 x5_3 <- X[,6] x5_3[x5_3 != 3] <- 0 x5_3[x5_3 == 3] <- 1 x5_3 x5_4 <- X[,6] x5_4[x5_4 != 4] <- 0 x5_4[x5_4 == 4] <- 1 x5_4 x5_5 <- X[,6] x5_5[x5_5 != 5] <- 0 x5_5[x5_5 == 5] <- 1 x5_5 x5_6 <- X[,6] x5_6[x5_6 != 6] <- 0 x5_6[x5_6 == 6] <- 1 x5_6 #avaliar sex, shock e survival antes de eliminar X <- cbind(X[,1:3], x3, x4, x5_2, x5_3, x5_4, x5_5, x5_6, X[,7:ncol(X)-1]) y <- matrix(dados_inicial$Cardiac.Index) n=length(y) p=ncol(X) betahat = solve(t(X) %*% X) %*% t(X) %*% y betahat ### SSE = t(y - X %*% betahat) %*% (y - X %*% betahat) MSE = SSE/(n-p) varbetahat = c(MSE) * solve(t(X) %*% X) fittedval = X %*% betahat simpleres = y - fittedval w = cbind(fittedval, simpleres) colnames(w) = c("fitted values","residuals") print(w) ## mrl <- lm(formula = y ~ Age + Height + Sex + Shock.Type + Systolic.Pressure + Mean.Arterial.Pressure + Heart.Rate + Diastolic.Pressure + Mean.Central.Venous + Body.Surface.Index + Cardiac.Index + Appearance.Time + Mean.Circulation.Time + Urinary.Output + Plasma.Volume.Index + Red.Cell.Index + Hemoglobin + Hematocrit, dados_inicial) summary(mrl) C <- cbind(0,diag(p-1)) m <- 0 SSE_h <- t(y)%*%(diag(n) - X%*%solve(t(X)%*%X)%*%t(X))%*%y f <- c() for(i in 2:p-1){ ci <- t(matrix(C[i,])) #linha Q_i <- t(ci%*%betahat-m)%*%solve(ci%*%solve(t(X)%*%X)%*%t(ci))%*%(ci%*%betahat-m) f_i <- (Q_i/1)/(SSE_h/(n-p)) f <- c(f,f_i) } 1-pf(f,1,n-p) #?? correlação library(corrplot) a = round(cor(X[,2:ncol(X)]), digits=2) corrplot(a, order = "hclust", method = 'color', addCoef.col = 'black', number.cex = 0.45, tl.cex = 0.5, tl.col="black")
Editor is loading...