Untitled
unknown
c_cpp
a month ago
23 kB
1
Indexable
import onnx import numpy as np import torch import cutlass from cutlass.epilogue import relu from cutlass import Tensor as FakeTensor from cutlass.utils.profiler import CUDAEventProfiler from transformers import BertTokenizer import time tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') class ONNXCompiler: def __init__(self, model_path): # 加载 ONNX 模型 self.model = onnx.load(model_path) self.graph = self.model.graph self.nodes = self.graph.node # 初始化 nodes 屬性 self.processed_nodes = set() # 用於跟踪已處理的 Add 節點 self.matmul_add_fuse_node = set() # 紀錄有 fuse 的 node for input_tensor in self.graph.input: print(f"Model Input Name: {input_tensor.name}, Shape: {[dim.dim_value for dim in input_tensor.type.tensor_type.shape.dim]}") # 提取初始化张量 self.initializers = {} for tensor in self.graph.initializer: name = tensor.name array = onnx.numpy_helper.to_array(tensor) # 将 TensorProto 转换为 NumPy 数组 self.initializers[name] = array self.tensors = self.initializers.copy() def _execute_node(self, node): op_type = node.op_type inputs = [] # 收集输入张量 for input_name in node.input: if input_name in self.tensors: inputs.append(self.tensors[input_name]) else: print(f"Warning: Missing input tensor '{input_name}' for node '{node.name}'.") return None if op_type == "MatMul": # 提取 MatMul 输入 A = inputs[0] B = inputs[1] original_shape_A = A.shape original_shape_B = B.shape # print("original_shape:") # print(A.shape + B.shape) if A.ndim > 2 or B.ndim > 2: # 批量矩陣相乘 batch_dims = np.prod(original_shape_A[:-2]) A = A.reshape(batch_dims, original_shape_A[-2], original_shape_A[-1]) B = B.reshape(batch_dims, original_shape_B[-2], original_shape_B[-1]) # print("reshape:") # print(A.shape + (B.shape)) M, K = A.shape[-2], A.shape[-1] K, N = B.shape[-2], B.shape[-1] tensor_A = torch.tensor(A, dtype=torch.float16, device="cuda").contiguous() tensor_B = torch.tensor(B, dtype=torch.float16, device="cuda").contiguous() # 查找是否有相关的 Add 节点 matmul_output_name = node.output[0] related_add_nodes = [ n for n in self.nodes if n.op_type == "Add" and matmul_output_name in n.input ] related_add_nodes = None if not related_add_nodes: print(f"No Add node related to MatMul output: {node.name}. Executing regular MatMul.") result = torch.matmul(tensor_A, tensor_B) result = result.cpu().numpy() if len(original_shape_A) > 2: result = result.reshape(*original_shape_A[:-2], M, N) # print(f"reshape2: ") # print(A.shape[:-1] + (B.shape[-1],)) self.tensors[matmul_output_name] = result return result print(f"Fusing MatMul with Add for Node: {node.name}") self.matmul_add_fuse_node.add(node.name) for add_node in related_add_nodes: add_input_name = [ name for name in add_node.input if name != matmul_output_name ][0] add_input = self.tensors.get(add_input_name) if add_input is not None: tensor_add_input = torch.tensor(add_input, dtype=torch.float16, device="cuda").contiguous() result = torch.matmul(tensor_A, tensor_B) + tensor_add_input result = result.cpu().numpy() # def example_epilogue(accum, alpha, C, beta, aux, bias): # F = alpha * accum + (beta * C + aux) # E = relu(F + 1) + bias # D = E + F # return D, F # scope_min = -4 # scope_max = 4 # tensor_C = tensor_add_input # tensor_C = torch.ceil(torch.empty(size=(M, N), dtype= torch.float16, device="cuda").uniform_(scope_min, scope_max)) # tensor_D = torch.zeros_like(tensor_C) # alpha = 1.0 # beta = 1.0 # aux = torch.ceil(torch.empty(size=(M, N), dtype=torch.float16, device="cuda").uniform_(scope_min, scope_max)) # bias = torch.ceil(torch.empty(size=(M, 1), dtype=torch.float16, device="cuda").uniform_(scope_min, scope_max)) # tensor_F = torch.zeros_like(tensor_D) # examples_tensors = { # "accum": FakeTensor(element=torch.float32, shape=(M, N), layout_tag=cutlass.LayoutType.RowMajor), # "alpha": alpha, # "C": tensor_C, # "beta": beta, # "aux": aux, # "bias": bias, # "D": tensor_D, # "F": tensor_F # } # epilogue_visitor = cutlass.epilogue.trace(example_epilogue, examples_tensors) # epilogue_visitor.epilogue_stages = 1 # visitor_args = { # "alpha": alpha, "C": tensor_C, "beta": beta, # "aux": aux, "bias": bias, "D": tensor_D, "F": tensor_F # } # plan = cutlass.op.Gemm( # element=torch.float16, # layout=cutlass.LayoutType.RowMajor, # element_accumulator=torch.float32, # cc=80 # ) # plan.epilogue_visitor = epilogue_visitor # plan.run( # tensor_A, tensor_B, tensor_C, tensor_D, # visitor_args=visitor_args, print_module=False) # result = tensor_D.cpu().numpy() if len(original_shape_A) > 2: result = result.reshape(*original_shape_A[:-2], M, N) self.processed_nodes.add(add_node.name) self.tensors[add_node.output[0]] = result return result # 運算邏輯 if op_type == "Slice": data = inputs[0] starts = inputs[1] if len(inputs) > 1 else np.zeros(data.ndim, dtype=np.int64) ends = inputs[2] if len(inputs) > 2 else np.array(data.shape, dtype=np.int64) axes = inputs[3] if len(inputs) > 3 else np.arange(data.ndim, dtype=np.int64) steps = inputs[4] if len(inputs) > 4 else np.ones_like(starts, dtype=np.int64) axes = np.array(axes, dtype=np.int64) slices = [slice(None)] * data.ndim for start, end, axis, step in zip(starts, ends, axes, steps): axis = int(axis) dim = data.shape[axis] start = int(start + dim if start < 0 else start) end = int(end + dim if end < 0 else end) start = np.clip(start, 0, dim) end = np.clip(end, 0, dim + 1 if step > 0 else dim) slices[axis] = slice(start, end, int(step)) return data[tuple(slices)] elif op_type == "MatMul": # print(f"MatMul Inputs Shapes: {[input.shape for input in inputs]}") if 0 in inputs[0].shape or 0 in inputs[1].shape: print(f"Warning: MatMul received empty input with shape {inputs[0].shape} and {inputs[1].shape}.") return np.zeros((inputs[0].shape[0], inputs[1].shape[-1])) try: return np.matmul(inputs[0], inputs[1]) except ValueError as e: print(f"Error during MatMul: {e}") raise elif op_type == "Add": # 如果 Add 節點已處理,直接返回結果 if node.name in self.processed_nodes: print(f"Skipping already processed Add Node: {node.name}") return inputs[0] self.processed_nodes.add(node.name) A = torch.tensor(inputs[0], device="cuda") B = torch.tensor(inputs[1], device="cuda") result = (A + B).cpu().numpy() self.tensors[node.output[0]] = result return result elif op_type == "Sub": A = torch.tensor(inputs[0], device="cuda") B = torch.tensor(inputs[1], device="cuda") result = (A - B).cpu().numpy() self.tensors[node.output[0]] = result return result elif op_type == "Mul": # 確保形狀兼容,否則調整形狀 try: A = torch.tensor(inputs[0], device="cuda") B = torch.tensor(inputs[1], device="cuda") result = (A * B).cpu().numpy() self.tensors[node.output[0]] = result except ValueError: # 嘗試廣播形狀 print("Broadcasting shapes for Mul operation...") inputs[1] = np.broadcast_to(inputs[1], inputs[0].shape) A = torch.tensor(inputs[0], device="cuda") B = torch.tensor(inputs[1], device="cuda") result = (A * B).cpu().numpy() self.tensors[node.output[0]] = result return result elif op_type == "Div": A = torch.tensor(inputs[0], device="cuda") B = torch.tensor(inputs[1], device="cuda") result = (A / B).cpu().numpy() self.tensors[node.output[0]] = result return result elif op_type == "Sqrt": A = torch.tensor(inputs[0], device="cuda") result = torch.sqrt(A).cpu().numpy() self.tensors[node.output[0]] = result return result elif op_type == "Reciprocal": A = torch.tensor(inputs[0], device="cuda") result = (1 / A).cpu().numpy() self.tensors[node.output[0]] = result return result elif op_type == "Shape": result = np.array(inputs[0].shape, dtype=np.int64) self.tensors[node.output[0]] = result return result elif op_type == "Transpose": A = torch.tensor(inputs[0], device="cuda") perm = [attr.ints for attr in node.attribute if attr.name == "perm"] if not perm: perm = list(range(A.ndim))[::-1] else: perm = perm[0] result = A.permute(*perm).cpu().numpy() self.tensors[node.output[0]] = result return result elif op_type == "Reshape": if len(inputs) > 1: shape = inputs[1].astype(np.int64) else: shape = np.array(node.attribute[0].ints, dtype=np.int64) return np.reshape(inputs[0], shape) elif op_type == "Concat": axis = self.tensors[node.input[1]] if len(node.input) > 1 and node.input[1] in self.tensors else 0 if isinstance(axis, np.ndarray): axis = axis.item() axis = int(axis) return np.concatenate(inputs, axis=axis) elif op_type == "Squeeze": axes = self.tensors[node.input[1]] if len(node.input) > 1 else None if axes is not None: axes = np.array(axes, dtype=int) valid_axes = [axis for axis in axes if inputs[0].shape[axis] == 1] if not valid_axes: raise ValueError("Cannot squeeze axes that do not have size equal to one.") return np.squeeze(inputs[0], axis=tuple(valid_axes)) else: return np.squeeze(inputs[0]) elif op_type == "Unsqueeze": axes = self.tensors[node.input[1]] if len(node.input) > 1 else [] if isinstance(axes, np.ndarray): axes = axes.tolist() return np.expand_dims(inputs[0], axis=tuple(axes)) elif op_type == "Identity": return inputs[0] elif op_type == "Tanh": A = torch.tensor(inputs[0], device="cuda") result = torch.tanh(A).cpu().numpy() self.tensors[node.output[0]] = result return result elif op_type == "Sigmoid": A = torch.tensor(inputs[0], device="cuda") result = torch.sigmoid(A).cpu().numpy() self.tensors[node.output[0]] = result return result elif op_type == "Relu": A = torch.tensor(inputs[0], device="cuda") result = torch.relu(A).cpu().numpy() self.tensors[node.output[0]] = result return result elif op_type == "Pow": A = torch.tensor(inputs[0], device="cuda") B = torch.tensor(inputs[1], device="cuda") result = torch.pow(A, B).cpu().numpy() self.tensors[node.output[0]] = result return result elif op_type == "Gather": data = inputs[0] indices = inputs[1] axis = self.tensors[node.input[2]] if len(node.input) > 2 and node.input[2] in self.tensors else 0 return np.take(data, indices, axis=axis) elif op_type == "ReduceMean": A = torch.tensor(inputs[0], device="cuda") axes = inputs[1] if len(inputs) > 1 else None keepdims = inputs[2] if len(inputs) > 2 else True result = torch.mean(A, dim=axes, keepdim=keepdims).cpu().numpy() self.tensors[node.output[0]] = result return result elif op_type == "Cast": dtype_map = { 1: np.float32, # FLOAT 2: np.uint8, # UINT8 3: np.int8, # INT8 4: np.uint16, # UINT16 5: np.int16, # INT16 6: np.int32, # INT32 7: np.int64, # INT64 8: str, # STRING 9: np.bool_, # BOOL 10: np.float16, # FLOAT16 11: np.double, # DOUBLE 12: np.uint32, # UINT32 13: np.uint64, # UINT64 } target_type = node.attribute[0].i if node.attribute else None if target_type not in dtype_map: raise NotImplementedError(f"Unsupported target type {target_type} for Cast operation.") return inputs[0].astype(dtype_map[target_type]) elif op_type == "ConstantOfShape": shape = inputs[0].astype(np.int64) # 這裡輸入是形狀數據 value = node.attribute[0].t if node.attribute else 0 # 獲取常數值,預設為 0 # 直接將常數值轉換為 NumPy 格式 constant_value = np.frombuffer(value.raw_data, dtype=np.float32) if value else np.array(0, dtype=np.float32) return np.full(shape, constant_value, dtype=constant_value.dtype) elif op_type == "OneHot": # 提取輸入數據 indices = inputs[0] # 索引數據 depth = int(inputs[1]) # one-hot 深度 values = inputs[2] if len(inputs) > 2 else np.array([0, 1], dtype=np.float32) # one-hot 值 axis = next((attr.i for attr in node.attribute if attr.name == "axis"), -1) # 默認 -1(最後一個軸) # 建立 one-hot 編碼 eye_matrix = np.eye(depth, dtype=values.dtype) # 深度對應的單位矩陣 one_hot = eye_matrix[indices.reshape(-1)] # 根據索引生成 one-hot 張量 # 將 one-hot 編碼調整為指定的軸位置 if axis == -1: result = one_hot else: result = np.moveaxis(one_hot, -1, axis) # 移動 one-hot 軸到指定位置 # 使用 values[0] 和 values[1] 替換默認的 0 和 1 result = result * (values[1] - values[0]) + values[0] return result elif op_type == "Softmax": A = torch.tensor(inputs[0], device="cuda") axis = node.attribute[0].i if node.attribute else -1 result = torch.softmax(A, dim=axis).cpu().numpy() self.tensors[node.output[0]] = result return result elif op_type == "Split": # 提取輸入數據 input_data = inputs[0] # 從屬性中獲取 axis 和 split axis = next((attr.i for attr in node.attribute if attr.name == "axis"), 0) split = next((attr.ints for attr in node.attribute if attr.name == "split"), None) # 如果未指定 split,均勻分割 if split is None: num_splits = len(node.output) if input_data.shape[axis] % num_splits != 0: raise ValueError(f"Cannot evenly split axis {axis} into {num_splits} parts.") split_size = input_data.shape[axis] // num_splits split = [split_size] * num_splits # print(f"Input Shape: {input_data.shape}, Axis: {axis}, Split Sizes: {split}") # 執行分割 result = np.split(input_data, np.cumsum(split[:-1]), axis=axis) # 確保輸出對應於節點的輸出名稱 for i, output_name in enumerate(node.output): self.tensors[output_name] = result[i] # print(f"Output {i} Shape: {result[i].shape}") return else: raise NotImplementedError(f"Operation {op_type} not implemented") def execute(self, inputs): # 確保 inputs 被添加到張量字典中 for input_name, input_value in inputs.items(): self.tensors[input_name] = input_value # 打印所有輸入的詳細資訊 print("\nInputs Details:") for input_name, input_value in inputs.items(): print(f"Input Name: {input_name}") print(f"Shape: {input_value.shape if isinstance(input_value, np.ndarray) else 'N/A'}") if isinstance(input_value, np.ndarray): print(f"Data (first 10 values): {input_value.flatten()[:10]}...") else: print(f"Data: {input_value}") print("-" * 50) execution_order = [] node_execution_times = {} # 用於記錄每個節點的執行時間 total_execution_time = 0.0 # 累計所有節點的執行時間 total_fuse_execution_time = 0.0 for node in self.nodes: # print(f"Executing node: {node.name}") # 檢查節點的所有輸入是否已準備好 ready = all(inp in self.tensors for inp in node.input) if ready: if node.name in self.processed_nodes: # print(f"Skipping already processed Add Node: {node.name}") output_name = node.output[0] # 假設 _execute_node 已實現 self.tensors[output_name] = self._execute_node(node) else: node_start_time = time.time() # 節點開始執行時間 output_name = node.output[0] # 假設 _execute_node 已實現 self.tensors[output_name] = self._execute_node(node) node_end_time = time.time() # 節點結束執行時間 # 記錄執行時間 execution_time = node_end_time - node_start_time node_execution_times[node.name] = execution_time total_execution_time += execution_time # 累計執行時間 execution_order.append(node) else: print(f"Skipping node '{node.name}' due to missing inputs.") # 打印所有節點的執行時間 print("\nNode Execution Times:") for node_name, exec_time in node_execution_times.items(): if node_name in self.matmul_add_fuse_node: print(f"Matmul Fuse Node: {node_name}, Execution Time: {exec_time:.6f} seconds") total_fuse_execution_time += exec_time else: print(f"Node: {node_name}, Execution Time: {exec_time:.6f} seconds") # 打印所有節點的總執行時間 print(f"\nTotal Execution Time: {total_execution_time:.6f} seconds") print(f"\nTotal Matmul Fuse Execution Time: {total_fuse_execution_time:.6f} seconds") # 收集所有輸出的張量 outputs = {o.name: self.tensors[o.name] for o in self.graph.output if o.name in self.tensors} return outputs, execution_order def main(): compiler = ONNXCompiler("model/bertsquad-10_simplified.onnx") # 示例问题和上下文 question = "What is the capital of France?" context = "The capital of France is Paris." # 分词 inputs = tokenizer(question, context, return_tensors='np', padding='max_length', max_length=256, truncation=True) # 提取输入数据 input_ids = inputs['input_ids'].astype(np.int64) segment_ids = inputs['token_type_ids'].astype(np.int64) input_mask = inputs['attention_mask'].astype(np.int64) unique_ids_raw_output = np.array([0], dtype=np.int64) # input_ids = np.random.randint(0, 30522, size=(0, 256), dtype=np.int64) # segment_ids = np.random.randint(0, 2, size=(0, 256), dtype=np.int64) # input_mask = np.random.randint(0, 2, size=(0, 256), dtype=np.int64) # unique_ids_raw_output = np.random.randint(0, 2, size=(0), dtype=np.int64) try: print("Starting model execution...") start_time = time.time() # 計算開始時間 outputs, execution_order = compiler.execute({ "input_ids:0": input_ids, "segment_ids:0": segment_ids, "input_mask:0": input_mask, "unique_ids_raw_output___9:0": unique_ids_raw_output }) end_time = time.time() # 計算結束時間 print("Execution complete.") print(f"\nTotal execution time: {end_time - start_time:.6f} seconds") # 打印總執行時間 print("Model outputs:", outputs) print("Execution order:", [node.name for node in execution_order]) except ValueError as e: print(f"Error: {e}") if __name__ == "__main__": main()
Editor is loading...
Leave a Comment