Untitled
unknown
c_cpp
10 months ago
23 kB
3
Indexable
import onnx
import numpy as np
import torch
import cutlass
from cutlass.epilogue import relu
from cutlass import Tensor as FakeTensor
from cutlass.utils.profiler import CUDAEventProfiler
from transformers import BertTokenizer
import time
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
class ONNXCompiler:
def __init__(self, model_path):
# 加载 ONNX 模型
self.model = onnx.load(model_path)
self.graph = self.model.graph
self.nodes = self.graph.node # 初始化 nodes 屬性
self.processed_nodes = set() # 用於跟踪已處理的 Add 節點
self.matmul_add_fuse_node = set() # 紀錄有 fuse 的 node
for input_tensor in self.graph.input:
print(f"Model Input Name: {input_tensor.name}, Shape: {[dim.dim_value for dim in input_tensor.type.tensor_type.shape.dim]}")
# 提取初始化张量
self.initializers = {}
for tensor in self.graph.initializer:
name = tensor.name
array = onnx.numpy_helper.to_array(tensor) # 将 TensorProto 转换为 NumPy 数组
self.initializers[name] = array
self.tensors = self.initializers.copy()
def _execute_node(self, node):
op_type = node.op_type
inputs = []
# 收集输入张量
for input_name in node.input:
if input_name in self.tensors:
inputs.append(self.tensors[input_name])
else:
print(f"Warning: Missing input tensor '{input_name}' for node '{node.name}'.")
return None
if op_type == "MatMul":
# 提取 MatMul 输入
A = inputs[0]
B = inputs[1]
original_shape_A = A.shape
original_shape_B = B.shape
# print("original_shape:")
# print(A.shape + B.shape)
if A.ndim > 2 or B.ndim > 2:
# 批量矩陣相乘
batch_dims = np.prod(original_shape_A[:-2])
A = A.reshape(batch_dims, original_shape_A[-2], original_shape_A[-1])
B = B.reshape(batch_dims, original_shape_B[-2], original_shape_B[-1])
# print("reshape:")
# print(A.shape + (B.shape))
M, K = A.shape[-2], A.shape[-1]
K, N = B.shape[-2], B.shape[-1]
tensor_A = torch.tensor(A, dtype=torch.float16, device="cuda").contiguous()
tensor_B = torch.tensor(B, dtype=torch.float16, device="cuda").contiguous()
# 查找是否有相关的 Add 节点
matmul_output_name = node.output[0]
related_add_nodes = [
n for n in self.nodes if n.op_type == "Add" and matmul_output_name in n.input
]
related_add_nodes = None
if not related_add_nodes:
print(f"No Add node related to MatMul output: {node.name}. Executing regular MatMul.")
result = torch.matmul(tensor_A, tensor_B)
result = result.cpu().numpy()
if len(original_shape_A) > 2:
result = result.reshape(*original_shape_A[:-2], M, N)
# print(f"reshape2: ")
# print(A.shape[:-1] + (B.shape[-1],))
self.tensors[matmul_output_name] = result
return result
print(f"Fusing MatMul with Add for Node: {node.name}")
self.matmul_add_fuse_node.add(node.name)
for add_node in related_add_nodes:
add_input_name = [
name for name in add_node.input if name != matmul_output_name
][0]
add_input = self.tensors.get(add_input_name)
if add_input is not None:
tensor_add_input = torch.tensor(add_input, dtype=torch.float16, device="cuda").contiguous()
result = torch.matmul(tensor_A, tensor_B) + tensor_add_input
result = result.cpu().numpy()
# def example_epilogue(accum, alpha, C, beta, aux, bias):
# F = alpha * accum + (beta * C + aux)
# E = relu(F + 1) + bias
# D = E + F
# return D, F
# scope_min = -4
# scope_max = 4
# tensor_C = tensor_add_input
# tensor_C = torch.ceil(torch.empty(size=(M, N), dtype= torch.float16, device="cuda").uniform_(scope_min, scope_max))
# tensor_D = torch.zeros_like(tensor_C)
# alpha = 1.0
# beta = 1.0
# aux = torch.ceil(torch.empty(size=(M, N), dtype=torch.float16, device="cuda").uniform_(scope_min, scope_max))
# bias = torch.ceil(torch.empty(size=(M, 1), dtype=torch.float16, device="cuda").uniform_(scope_min, scope_max))
# tensor_F = torch.zeros_like(tensor_D)
# examples_tensors = {
# "accum": FakeTensor(element=torch.float32, shape=(M, N), layout_tag=cutlass.LayoutType.RowMajor),
# "alpha": alpha,
# "C": tensor_C,
# "beta": beta,
# "aux": aux,
# "bias": bias,
# "D": tensor_D,
# "F": tensor_F
# }
# epilogue_visitor = cutlass.epilogue.trace(example_epilogue, examples_tensors)
# epilogue_visitor.epilogue_stages = 1
# visitor_args = {
# "alpha": alpha, "C": tensor_C, "beta": beta,
# "aux": aux, "bias": bias, "D": tensor_D, "F": tensor_F
# }
# plan = cutlass.op.Gemm(
# element=torch.float16,
# layout=cutlass.LayoutType.RowMajor,
# element_accumulator=torch.float32,
# cc=80
# )
# plan.epilogue_visitor = epilogue_visitor
# plan.run(
# tensor_A, tensor_B, tensor_C, tensor_D,
# visitor_args=visitor_args, print_module=False)
# result = tensor_D.cpu().numpy()
if len(original_shape_A) > 2:
result = result.reshape(*original_shape_A[:-2], M, N)
self.processed_nodes.add(add_node.name)
self.tensors[add_node.output[0]] = result
return result
# 運算邏輯
if op_type == "Slice":
data = inputs[0]
starts = inputs[1] if len(inputs) > 1 else np.zeros(data.ndim, dtype=np.int64)
ends = inputs[2] if len(inputs) > 2 else np.array(data.shape, dtype=np.int64)
axes = inputs[3] if len(inputs) > 3 else np.arange(data.ndim, dtype=np.int64)
steps = inputs[4] if len(inputs) > 4 else np.ones_like(starts, dtype=np.int64)
axes = np.array(axes, dtype=np.int64)
slices = [slice(None)] * data.ndim
for start, end, axis, step in zip(starts, ends, axes, steps):
axis = int(axis)
dim = data.shape[axis]
start = int(start + dim if start < 0 else start)
end = int(end + dim if end < 0 else end)
start = np.clip(start, 0, dim)
end = np.clip(end, 0, dim + 1 if step > 0 else dim)
slices[axis] = slice(start, end, int(step))
return data[tuple(slices)]
elif op_type == "MatMul":
# print(f"MatMul Inputs Shapes: {[input.shape for input in inputs]}")
if 0 in inputs[0].shape or 0 in inputs[1].shape:
print(f"Warning: MatMul received empty input with shape {inputs[0].shape} and {inputs[1].shape}.")
return np.zeros((inputs[0].shape[0], inputs[1].shape[-1]))
try:
return np.matmul(inputs[0], inputs[1])
except ValueError as e:
print(f"Error during MatMul: {e}")
raise
elif op_type == "Add":
# 如果 Add 節點已處理,直接返回結果
if node.name in self.processed_nodes:
print(f"Skipping already processed Add Node: {node.name}")
return inputs[0]
self.processed_nodes.add(node.name)
A = torch.tensor(inputs[0], device="cuda")
B = torch.tensor(inputs[1], device="cuda")
result = (A + B).cpu().numpy()
self.tensors[node.output[0]] = result
return result
elif op_type == "Sub":
A = torch.tensor(inputs[0], device="cuda")
B = torch.tensor(inputs[1], device="cuda")
result = (A - B).cpu().numpy()
self.tensors[node.output[0]] = result
return result
elif op_type == "Mul":
# 確保形狀兼容,否則調整形狀
try:
A = torch.tensor(inputs[0], device="cuda")
B = torch.tensor(inputs[1], device="cuda")
result = (A * B).cpu().numpy()
self.tensors[node.output[0]] = result
except ValueError:
# 嘗試廣播形狀
print("Broadcasting shapes for Mul operation...")
inputs[1] = np.broadcast_to(inputs[1], inputs[0].shape)
A = torch.tensor(inputs[0], device="cuda")
B = torch.tensor(inputs[1], device="cuda")
result = (A * B).cpu().numpy()
self.tensors[node.output[0]] = result
return result
elif op_type == "Div":
A = torch.tensor(inputs[0], device="cuda")
B = torch.tensor(inputs[1], device="cuda")
result = (A / B).cpu().numpy()
self.tensors[node.output[0]] = result
return result
elif op_type == "Sqrt":
A = torch.tensor(inputs[0], device="cuda")
result = torch.sqrt(A).cpu().numpy()
self.tensors[node.output[0]] = result
return result
elif op_type == "Reciprocal":
A = torch.tensor(inputs[0], device="cuda")
result = (1 / A).cpu().numpy()
self.tensors[node.output[0]] = result
return result
elif op_type == "Shape":
result = np.array(inputs[0].shape, dtype=np.int64)
self.tensors[node.output[0]] = result
return result
elif op_type == "Transpose":
A = torch.tensor(inputs[0], device="cuda")
perm = [attr.ints for attr in node.attribute if attr.name == "perm"]
if not perm:
perm = list(range(A.ndim))[::-1]
else:
perm = perm[0]
result = A.permute(*perm).cpu().numpy()
self.tensors[node.output[0]] = result
return result
elif op_type == "Reshape":
if len(inputs) > 1:
shape = inputs[1].astype(np.int64)
else:
shape = np.array(node.attribute[0].ints, dtype=np.int64)
return np.reshape(inputs[0], shape)
elif op_type == "Concat":
axis = self.tensors[node.input[1]] if len(node.input) > 1 and node.input[1] in self.tensors else 0
if isinstance(axis, np.ndarray):
axis = axis.item()
axis = int(axis)
return np.concatenate(inputs, axis=axis)
elif op_type == "Squeeze":
axes = self.tensors[node.input[1]] if len(node.input) > 1 else None
if axes is not None:
axes = np.array(axes, dtype=int)
valid_axes = [axis for axis in axes if inputs[0].shape[axis] == 1]
if not valid_axes:
raise ValueError("Cannot squeeze axes that do not have size equal to one.")
return np.squeeze(inputs[0], axis=tuple(valid_axes))
else:
return np.squeeze(inputs[0])
elif op_type == "Unsqueeze":
axes = self.tensors[node.input[1]] if len(node.input) > 1 else []
if isinstance(axes, np.ndarray):
axes = axes.tolist()
return np.expand_dims(inputs[0], axis=tuple(axes))
elif op_type == "Identity":
return inputs[0]
elif op_type == "Tanh":
A = torch.tensor(inputs[0], device="cuda")
result = torch.tanh(A).cpu().numpy()
self.tensors[node.output[0]] = result
return result
elif op_type == "Sigmoid":
A = torch.tensor(inputs[0], device="cuda")
result = torch.sigmoid(A).cpu().numpy()
self.tensors[node.output[0]] = result
return result
elif op_type == "Relu":
A = torch.tensor(inputs[0], device="cuda")
result = torch.relu(A).cpu().numpy()
self.tensors[node.output[0]] = result
return result
elif op_type == "Pow":
A = torch.tensor(inputs[0], device="cuda")
B = torch.tensor(inputs[1], device="cuda")
result = torch.pow(A, B).cpu().numpy()
self.tensors[node.output[0]] = result
return result
elif op_type == "Gather":
data = inputs[0]
indices = inputs[1]
axis = self.tensors[node.input[2]] if len(node.input) > 2 and node.input[2] in self.tensors else 0
return np.take(data, indices, axis=axis)
elif op_type == "ReduceMean":
A = torch.tensor(inputs[0], device="cuda")
axes = inputs[1] if len(inputs) > 1 else None
keepdims = inputs[2] if len(inputs) > 2 else True
result = torch.mean(A, dim=axes, keepdim=keepdims).cpu().numpy()
self.tensors[node.output[0]] = result
return result
elif op_type == "Cast":
dtype_map = {
1: np.float32, # FLOAT
2: np.uint8, # UINT8
3: np.int8, # INT8
4: np.uint16, # UINT16
5: np.int16, # INT16
6: np.int32, # INT32
7: np.int64, # INT64
8: str, # STRING
9: np.bool_, # BOOL
10: np.float16, # FLOAT16
11: np.double, # DOUBLE
12: np.uint32, # UINT32
13: np.uint64, # UINT64
}
target_type = node.attribute[0].i if node.attribute else None
if target_type not in dtype_map:
raise NotImplementedError(f"Unsupported target type {target_type} for Cast operation.")
return inputs[0].astype(dtype_map[target_type])
elif op_type == "ConstantOfShape":
shape = inputs[0].astype(np.int64) # 這裡輸入是形狀數據
value = node.attribute[0].t if node.attribute else 0 # 獲取常數值,預設為 0
# 直接將常數值轉換為 NumPy 格式
constant_value = np.frombuffer(value.raw_data, dtype=np.float32) if value else np.array(0, dtype=np.float32)
return np.full(shape, constant_value, dtype=constant_value.dtype)
elif op_type == "OneHot":
# 提取輸入數據
indices = inputs[0] # 索引數據
depth = int(inputs[1]) # one-hot 深度
values = inputs[2] if len(inputs) > 2 else np.array([0, 1], dtype=np.float32) # one-hot 值
axis = next((attr.i for attr in node.attribute if attr.name == "axis"), -1) # 默認 -1(最後一個軸)
# 建立 one-hot 編碼
eye_matrix = np.eye(depth, dtype=values.dtype) # 深度對應的單位矩陣
one_hot = eye_matrix[indices.reshape(-1)] # 根據索引生成 one-hot 張量
# 將 one-hot 編碼調整為指定的軸位置
if axis == -1:
result = one_hot
else:
result = np.moveaxis(one_hot, -1, axis) # 移動 one-hot 軸到指定位置
# 使用 values[0] 和 values[1] 替換默認的 0 和 1
result = result * (values[1] - values[0]) + values[0]
return result
elif op_type == "Softmax":
A = torch.tensor(inputs[0], device="cuda")
axis = node.attribute[0].i if node.attribute else -1
result = torch.softmax(A, dim=axis).cpu().numpy()
self.tensors[node.output[0]] = result
return result
elif op_type == "Split":
# 提取輸入數據
input_data = inputs[0]
# 從屬性中獲取 axis 和 split
axis = next((attr.i for attr in node.attribute if attr.name == "axis"), 0)
split = next((attr.ints for attr in node.attribute if attr.name == "split"), None)
# 如果未指定 split,均勻分割
if split is None:
num_splits = len(node.output)
if input_data.shape[axis] % num_splits != 0:
raise ValueError(f"Cannot evenly split axis {axis} into {num_splits} parts.")
split_size = input_data.shape[axis] // num_splits
split = [split_size] * num_splits
# print(f"Input Shape: {input_data.shape}, Axis: {axis}, Split Sizes: {split}")
# 執行分割
result = np.split(input_data, np.cumsum(split[:-1]), axis=axis)
# 確保輸出對應於節點的輸出名稱
for i, output_name in enumerate(node.output):
self.tensors[output_name] = result[i]
# print(f"Output {i} Shape: {result[i].shape}")
return
else:
raise NotImplementedError(f"Operation {op_type} not implemented")
def execute(self, inputs):
# 確保 inputs 被添加到張量字典中
for input_name, input_value in inputs.items():
self.tensors[input_name] = input_value
# 打印所有輸入的詳細資訊
print("\nInputs Details:")
for input_name, input_value in inputs.items():
print(f"Input Name: {input_name}")
print(f"Shape: {input_value.shape if isinstance(input_value, np.ndarray) else 'N/A'}")
if isinstance(input_value, np.ndarray):
print(f"Data (first 10 values): {input_value.flatten()[:10]}...")
else:
print(f"Data: {input_value}")
print("-" * 50)
execution_order = []
node_execution_times = {} # 用於記錄每個節點的執行時間
total_execution_time = 0.0 # 累計所有節點的執行時間
total_fuse_execution_time = 0.0
for node in self.nodes:
# print(f"Executing node: {node.name}")
# 檢查節點的所有輸入是否已準備好
ready = all(inp in self.tensors for inp in node.input)
if ready:
if node.name in self.processed_nodes:
# print(f"Skipping already processed Add Node: {node.name}")
output_name = node.output[0]
# 假設 _execute_node 已實現
self.tensors[output_name] = self._execute_node(node)
else:
node_start_time = time.time() # 節點開始執行時間
output_name = node.output[0]
# 假設 _execute_node 已實現
self.tensors[output_name] = self._execute_node(node)
node_end_time = time.time() # 節點結束執行時間
# 記錄執行時間
execution_time = node_end_time - node_start_time
node_execution_times[node.name] = execution_time
total_execution_time += execution_time # 累計執行時間
execution_order.append(node)
else:
print(f"Skipping node '{node.name}' due to missing inputs.")
# 打印所有節點的執行時間
print("\nNode Execution Times:")
for node_name, exec_time in node_execution_times.items():
if node_name in self.matmul_add_fuse_node:
print(f"Matmul Fuse Node: {node_name}, Execution Time: {exec_time:.6f} seconds")
total_fuse_execution_time += exec_time
else:
print(f"Node: {node_name}, Execution Time: {exec_time:.6f} seconds")
# 打印所有節點的總執行時間
print(f"\nTotal Execution Time: {total_execution_time:.6f} seconds")
print(f"\nTotal Matmul Fuse Execution Time: {total_fuse_execution_time:.6f} seconds")
# 收集所有輸出的張量
outputs = {o.name: self.tensors[o.name] for o in self.graph.output if o.name in self.tensors}
return outputs, execution_order
def main():
compiler = ONNXCompiler("model/bertsquad-10_simplified.onnx")
# 示例问题和上下文
question = "What is the capital of France?"
context = "The capital of France is Paris."
# 分词
inputs = tokenizer(question, context, return_tensors='np', padding='max_length', max_length=256, truncation=True)
# 提取输入数据
input_ids = inputs['input_ids'].astype(np.int64)
segment_ids = inputs['token_type_ids'].astype(np.int64)
input_mask = inputs['attention_mask'].astype(np.int64)
unique_ids_raw_output = np.array([0], dtype=np.int64)
# input_ids = np.random.randint(0, 30522, size=(0, 256), dtype=np.int64)
# segment_ids = np.random.randint(0, 2, size=(0, 256), dtype=np.int64)
# input_mask = np.random.randint(0, 2, size=(0, 256), dtype=np.int64)
# unique_ids_raw_output = np.random.randint(0, 2, size=(0), dtype=np.int64)
try:
print("Starting model execution...")
start_time = time.time() # 計算開始時間
outputs, execution_order = compiler.execute({
"input_ids:0": input_ids,
"segment_ids:0": segment_ids,
"input_mask:0": input_mask,
"unique_ids_raw_output___9:0": unique_ids_raw_output
})
end_time = time.time() # 計算結束時間
print("Execution complete.")
print(f"\nTotal execution time: {end_time - start_time:.6f} seconds") # 打印總執行時間
print("Model outputs:", outputs)
print("Execution order:", [node.name for node in execution_order])
except ValueError as e:
print(f"Error: {e}")
if __name__ == "__main__":
main()
Editor is loading...
Leave a Comment