Untitled
//@version=5 // This code is created by algopoint. All other leaked algos is available at algopoint.mysellix.io // AlgoPoint Official Contact Adrress // Instagram: algopoint // Instagram: algopoint01 // Website: algopoint.mysellix.io // Mail: algopointstore@gmail.com //text inputs var user_consensus = input.string(defval="", title="By going to algopoint.mysellix.io or by clicking on the link in the algopoint instagram bio you can get the leaked codes for all premium indicators like Elite Algo, EzAlgo and LuxAlgo. Free products are also available! algopoint.mysellix.io", confirm = true, group="AlgoPoint") title = 'AlgoPoint' subtitle = 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' textVPosition = 'middle' textHPosition = 'center' symVPosition = 'top' symHPosition = 'left' width = 0 height = 0 c_title = #b2b5be80 s_title = 'large' a_title = 'center' c_subtitle = #b2b5be80 s_subtitle = 'normal' a_subtitle = 'center' c_bg = color.new(color.blue, 100) indicator("AlgoPoint | Signals & Overlays", "[AlgoPoint] Signals & Overlays™ [2.2]", overlay = true, max_labels_count = 500) //Import libraries import achirameegasthanne/LuxFunctions/1 as LAF import achirameegasthanne/KernelFunctions/1 as kernels // # ============================[GET USERS INPUT]============================ # groupBasic = "BASIC SETTINGS" showSignals = input(true, "Show Signals", inline = "1", group = groupBasic, tooltip = "Enables or disables the signals") signalPresets = input.string("None", "Presets / Filters", ["None", "Trend Trader [Preset]","Scalper [Preset]", "Swing Trader [Preset]", "Contrarian Trader [Preset]", "Smart Trail [Filter]", "Trend Tracer [Filter]", "Trend Strength [Filter]", "Trend Catcher [Filter]", "Neo Cloud [Filter]"],tooltip = "Automatically sets settings or filters for a given category", group= groupBasic) signalMode = input.string("Confirmation + Exits", "Signal Mode", ["Confirmation + Exits", "Contrarian + Exits", "None"],tooltip = "Changes the Mode of the signals" ,group = groupBasic) signalClassifier = input(true,"AI Signal Classifer",tooltip = "Shows signal quality from 1-4 on signals" ,group = groupBasic) sensitivity = input.float(5, "Signal Sensitivity ", minval = 1, maxval = 26,step=1, tooltip = "Changes the sensetivity of the signals, the lower this setting the more short term signals you will get, while a higher number will result in longer term signals.",group = groupBasic) atrLength = input.int(10, "Signal Tuner ", minval = 1, maxval = 25,step=1,tooltip = "Alows you to tune your signals, the higher the number the more refined but laggier the signal" ,group = groupBasic) candleColorType = input.string("Confirmation Simple", "Candle Coloring", ["Confirmation Simple","Confirmation Gradient","Contrarian Gradient","None"],tooltip = "Changes the type of signal coloring", group = groupBasic) // Indicator Overlay Settings groupOverlay = "INDICATOR OVERLAY" smartTrail = input(true, "Smart Trail", inline = "1", group = groupOverlay) trendCatcher = input(false, "Trend Catcher", inline = "2", group = groupOverlay) neoCloud = input(false, "Neo Cloud", inline = "3", group = groupOverlay) reversalZone = input(true, "Reversal Zones", inline = "1", group = groupOverlay) trendTracer = input(false, "Trend Tracer", inline = "2", group = groupOverlay) showDashboard = input(true, "Dashboard", inline = "3", group = groupOverlay) showTrailingStoploss = input(false, "Trailing Stoploss", inline = "4", group = groupOverlay) showMovingAverage = input(false, "AI Moving Average", inline = "4", group = groupOverlay) showSessions = input(false, "Sessions", inline = "5", group = groupOverlay) // Advanced Settings groupAdvanced = "ADVANCED SETTINGS" takeProfitBoxes = input.string("Off", "TP/SL Points", options=["Off","On"], inline = "2", tooltip = "Shows Take Profit and Stop Loss areas",group = groupAdvanced) takeProfitStopLossDistance = input.int(5,"", minval = 1, maxval = 10, inline = "2", group=groupAdvanced) autopilotMode = input.string("Off", "Autopilot Sensivity",["Off","Short-Term", "Mid-Term", "Long-Term"],tooltip = "Sets automatic settings for signals and improves their quality" ,inline = "3", group = groupAdvanced) dashboardLocation = input.string("Bottom Right","Dashboard Location", ["Top Right","Bottom Right","Bottom Left"], inline = "4",tooltip = "Changes dashboard positions" ,group = groupAdvanced) dashboardSize = input.string("Normal","Dashboard Size", ["Tiny","Small","Normal","Large"], inline = "5",tooltip = "Changes the size of the dashboard" ,group = groupAdvanced) if (signalPresets == "Trend Trader [Preset]") smartTrail := true trendCatcher := true neoCloud := true trendTracer := true smartTrail := true if (signalPresets == "Scalper [Preset]") sensitivity := 4 smartTrail := true trendTracer := true candleColorType := "Confirmation Gradient" if (signalPresets == "Swing Trader [Preset]") sensitivity := 18 neoCloud := true candleColorType := "Confirmation Simple" if (signalPresets == "Contrarian Trader [Preset]") reversalZone := true smartTrail := true candleColorType := "Contrarian Gradient" n = bar_index // # ============================[BUY/SELL SIGNALS]============================ # //------------------------------------------------------------------------------ //Settings //-----------------------------------------------------------------------------{ //-----------------------------------------------------------------------------} // # ============================[SESSIONS]============================ # show_sesa = true sesa_txt = 'New York' sesa_ses = '1300-2200' sesa_css = #ff5d00 sesa_range = true sesa_tl = false sesa_avg = false sesa_vwap = false sesa_maxmin = false //Session B show_sesb = true sesb_txt = 'London' sesb_ses = '0700-1600' sesb_css = #2157f3 sesb_range = true sesb_tl = false sesb_avg = false sesb_vwap = false sesb_maxmin = false //Timezones tz_incr = 0 use_exchange = false //Ranges Options bg_transp = 90 show_outline = true show_txt = true //Dashboard show_ses_div = false show_day_div = false //-----------------------------------------------------------------------------} //Functions //-----------------------------------------------------------------------------{ //Get session average get_avg(session)=> var len = 1 var float csma = na var float sma = na if session > session[1] len := 1 csma := close if session and session == session[1] and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' len += 1 csma += close sma := csma / len sma //Get trendline coordinates get_linreg(session)=> var len = 1 var float cwma = na var float csma = na var float csma2 = na var float y1 = na var float y2 = na var float stdev = na var float r2 = na if session > session[1] len := 1 cwma := close csma := close csma2 := close * close if session and session == session[1] and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' len += 1 csma += close csma2 += close * close cwma += close * len sma = csma / len wma = cwma / (len * (len + 1) / 2) cov = (wma - sma) * (len+1)/2 stdev := math.sqrt(csma2 / len - sma * sma) r2 := cov / (stdev * (math.sqrt(len*len - 1) / (2 * math.sqrt(3)))) y1 := 4 * sma - 3 * wma y2 := 3 * wma - 2 * sma [y1 , y2, stdev, r2] //Session Vwap get_vwap(session) => var float num = na var float den = na if session > session[1] and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' num := close * volume den := volume else if session and session == session[1] and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' num += close * volume den += volume else num := na [num, den] //Set line set_line(session, y1, y2, session_css)=> var line tl = na if session > session[1] and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' tl := line.new(n, close, n, close, color = session_css) if session and session == session[1] and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' line.set_y1(tl, y1) line.set_xy2(tl, n, y2) //Set session range get_range(session, session_name, session_css)=> var t = 0 var max = high var min = low var box bx = na var label lbl = na if session > session[1] and showSessions and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' t := time max := high min := low bx := box.new(n, max, n, min , bgcolor = color.new(session_css, bg_transp) , border_color = show_outline ? session_css : na , border_style = line.style_dotted) if show_txt and showSessions and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' lbl := label.new(t, max, session_name , xloc = xloc.bar_time , textcolor = session_css , style = label.style_label_down , color = color.new(color.white, 100) , size = size.tiny) if session and session == session[1] and showSessions and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' max := math.max(high, max) min := math.min(low, min) box.set_top(bx, max) box.set_rightbottom(bx, n, min) if show_txt label.set_xy(lbl, int(math.avg(t, time)), max) [session ? na : max, session ? na : min] //-----------------------------------------------------------------------------} //Sessions //-----------------------------------------------------------------------------{ tf = timeframe.period var tz = use_exchange ? syminfo.timezone : str.format('UTC{0}{1}', tz_incr >= 0 ? '+' : '-', math.abs(tz_incr)) is_sesa = math.sign(nz(time(tf, sesa_ses, tz))) is_sesb = math.sign(nz(time(tf, sesb_ses, tz))) //-----------------------------------------------------------------------------} //Dashboard //-----------------------------------------------------------------------------{ var float max_sesa = na var float min_sesa = na var float max_sesb = na var float min_sesb = na var float max_sesc = na var float min_sesc = na var float max_sesd = na var float min_sesd = na //Ranges if show_sesa and sesa_range and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' [max, min] = get_range(is_sesa, sesa_txt, sesa_css) max_sesa := max min_sesa := min if show_sesb and sesb_range and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' [max, min] = get_range(is_sesb, sesb_txt, sesb_css) max_sesb := max min_sesb := min //Trendlines //Mean if show_sesa and sesa_avg and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' avg = get_avg(is_sesa) set_line(is_sesa, avg, avg, sesa_css) if show_sesb and sesb_avg and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' avg = get_avg(is_sesb) set_line(is_sesb, avg, avg, sesb_css) //VWAP //-----------------------------------------------------------------------------} //Plots //-----------------------------------------------------------------------------{ //Plot max/min plot(showSessions and sesa_maxmin and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' ? max_sesa : na, 'Session A Maximum', sesa_css, 1, plot.style_linebr, editable = false) plot(showSessions and sesa_maxmin and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' ? min_sesa : na, 'Session A Minimum', sesa_css, 1, plot.style_linebr, editable = false) plot(showSessions and sesb_maxmin and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' ? max_sesb : na, 'Session B Maximum', sesb_css, 1, plot.style_linebr, editable = false) plot(showSessions and sesb_maxmin and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' ? min_sesb : na, 'Session B Minimum', sesb_css, 1, plot.style_linebr, editable = false) //Plot Divider A plotshape(is_sesa and show_ses_div and show_sesa and showSessions, "·" , shape.square , location.bottom , na , text = "." , textcolor = sesa_css , size = size.tiny , display = display.all - display.status_line , editable = false) plotshape(is_sesa != is_sesa[1] and show_ses_div and show_sesa and showSessions, "NYE" , shape.labelup , location.bottom , na , text = "❚" , textcolor = sesa_css , size = size.tiny , display = display.all - display.status_line , editable = false) //Plot Divider B plotshape(is_sesb and show_ses_div and show_sesb and showSessions, "·" , shape.labelup , location.bottom , na , text = "." , textcolor = sesb_css , size = size.tiny , display = display.all - display.status_line , editable = false) plotshape(is_sesb != is_sesb[1] and show_ses_div and show_sesb and showSessions, "LDN" , shape.labelup , location.bottom , na , text = "❚" , textcolor = sesb_css , size = size.tiny , display = display.all - display.status_line , editable = false) // # ============================[FUNCTIONS]============================ # type bar float o = open float h = high float l = low float c = close float v = volume int i = bar_index bar b = bar.new() nzV = nz(b.v) f_calcV() => uV = 0.0 dV = 0.0 switch (b.c - b.l) > (b.h - b.c) => uV := nzV (b.c - b.l) < (b.h - b.c) => dV := -nzV b.c > b.o => uV := nzV b.c < b.o => dV := -nzV b.c > nz(b.c[1]) => uV := nzV b.c < nz(b.c[1]) => dV := -nzV nz(uV[1]) > 0 => uV := uV + nzV nz(dV[1]) < 0 => dV := dV - nzV [uV, dV] // # ============================[CONSTANT VARIABLES]============================ # sma4 = ta.sma(close, 4) sma5 = ta.sma(close, 5) sma9 = ta.sma(close, 9) ema50 = ta.ema(close, 50) ema200 = ta.ema(close, 200) bullishSignalColor = #59e08a bearishSignalColor = #ff5959 dashboardRedText = #ee787d dashboardGreenText = #42bda8 dashboardGreenBackground = #284444 dashboardRedBackground = #49343e // # ============================[CANDLE COLORING]============================ # macdFastLength = 12 macdSlowLength = 26 macdSignalLength = 9 if (candleColorType != 'Confirmation Simple') macdFastLength := 10 macdSlowLength := 25 macdSignalLength:=8 [MacdX, signalX, histX] = ta.macd(close, macdFastLength, macdSlowLength, macdSignalLength) //candle color scheme greenHigh = #4ce653 greenMidHigh =#4ce653 greenMidLow =#4ce653 greenLow = #56328f // Yellow yellowLow = #56328f // 4 level of red redHigh = #ff0000 redMidHigh = #ff0000 redMidLow = #ff0000 redLow = #56328f if (candleColorType == 'Confirmation Gradient') greenHigh := #01d70c greenMidHigh := #269444 greenMidLow :=#4f966c greenLow := #425970 // Yellow yellowLow := #513a88 // 4 level of red redHigh := #ff0000 redMidHigh := #c21637 redMidLow := #c33252 redLow := #8e215f if (candleColorType == 'Contrarian Gradient') redHigh := #01d70c redMidHigh := #269444 redMidLow :=#4f966c redLow := #425970 // Yellow yellowLow := #513a88 // 4 level of red greenHigh := #ff0000 greenMidHigh := #c21637 greenMidLow := #c33252 greenLow := #8e215f // Default color candleBody = yellowLow if histX > 0 if histX > histX[1] and histX[1] > 0 and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' candleBody := greenLow if histX < 0 if histX < histX[1] and histX[1] < 0 and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' candleBody := redLow // Bullish trend if MacdX > 0 and histX > 0 candleBody := greenMidLow if histX > histX[1] and MacdX[1] > 0 and histX[1] > 0 and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' candleBody := greenMidHigh if histX > histX[2] and MacdX[2] > 0 and histX[2] > 0 and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' candleBody := greenHigh // Bearish trend if MacdX < 0 and histX < 0 candleBody := redMidLow if histX < histX[1] and MacdX[1] < 0 and histX[1] < 0 and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' candleBody := redMidHigh if histX < histX[2] and MacdX[2] < 0 and histX[2] < 0 and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' candleBody := redHigh barcolor(candleColorType == 'None' ? na : candleBody, editable = false) // # ============================[SMART TRAIL]============================ # [smartTrailLine, fillerLine, smartTrailDirection] = LAF.getSmartTrail(10, 4, 8) smartTrail1 = plot(smartTrail and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' ? smartTrailLine : na, "Smart Trail", style = plot.style_line, color = smartTrailDirection== 'long' ? color.new(#2157f9, 0) : smartTrailDirection == 'short' ? color.new(#ff1100, 0) : na, editable = false) smartTrail2 = plot(smartTrail and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' ? fillerLine : na, "Fib 2", style = plot.style_line, transp = 100, editable = false) fill(smartTrail1, smartTrail2, color = smartTrailDirection == 'long' ? color.new(#2157f9, 80) : smartTrailDirection == 'short' ? color.new(#ff1100, 80) : na, editable = false) // # ============================[TREND CATCHER]============================ # [trendCatcherLine, trendCatcherColor] = LAF.getTrendCatcher() newTrendCatcherColor = trendCatcherColor == color.blue ? #02ff65 : #ff1100 plot(trendCatcher and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' ? trendCatcherLine : na, title='Trend Catcher', linewidth=2, color=newTrendCatcherColor, editable = false) // # ============================[NEO CLOUD]============================ # // # ============================[REVERSAL ZONES]============================ # // # ============================[TREND TRACER]============================ # [trendTracerLine, trendTracerDirection] = LAF.getTrendTracer() plot(trendTracer and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' ? trendTracerLine : na, title='Trend Tracer', linewidth=2, style=plot.style_cross, color = trendTracerDirection, editable = false) // # ============================[DASHBOARD COMPONENTS|]============================ # trendStrengthMetric = math.abs(LAF.getTrendStrengthMetric(14, 'RMA', 21, 'EMA')) trendStrengthMetric := trendStrengthMetric*2.5 trendIndication = trendStrengthMetric > 30 and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' ? "🔥" : "❄️" trendStrengthCellColor = newTrendCatcherColor == #02ff65 ? dashboardGreenBackground : dashboardRedBackground trendStrengthTextColor = trendStrengthCellColor == dashboardGreenBackground ? dashboardGreenText : dashboardRedText volatilityMetric = LAF.getVolatilityMetric() volatilityMetric2 = ta.sma(LAF.getVolatilityMetric(), 8) volatilityText = volatilityMetric < 30 ? 'Stable' : volatilityMetric < 80 ? 'Moderate' : 'Volatile' volatilityEmoji = volatilityMetric2 > volatilityMetric ? '📉' : '📈' volatilityCellColor = newTrendCatcherColor == #02ff65 ? dashboardGreenBackground : dashboardRedBackground VolatilityTextColor = trendStrengthCellColor == dashboardGreenBackground ? dashboardGreenText : dashboardRedText squeezeMetric = LAF.getSqueezeMetric(45, 20) squeezeIsHigh = squeezeMetric >= 80 ? true : false squeezeCellColor = trendTracerDirection == #02ff65 ? #1a3a3e : #482632 squeezeTextColor = trendTracerDirection != #02ff65 ? #ed3544 : #0a907a // and title == 'AlgoPoint' and subtitle == 'All Leaked Algos \n Instagram: algopoint \n Website: algopoint.mysellix.io' and textVPosition == 'middle' and textHPosition == 'center' and c_title == #b2b5be80 and s_title == 'large' and a_title == 'center' and c_subtitle == #b2b5be80 and s_subtitle == 'normal' and a_subtitle == 'center' // [uV, dV] = f_calcV() totalVolume = uV + math.abs(dV) //volumecolor = totalVolume >= 50 ? bullish : bearish volumeCellColor = dashboardRedBackground volumeTextColor = totalVolume >= 50 ? dashboardGreenText : dashboardRedText if (totalVolume >= 50) totalVolume := totalVolume*2 volumeCellColor := dashboardGreenBackground else totalVolume := totalVolume*-2 volumeSentiment = totalVolume table_position = dashboardLocation == 'Bottom Left' ? position.bottom_left : dashboardLocation == 'Top Right' ? position.top_right : position.bottom_right table_size = dashboardSize == 'Tiny' ? size.tiny : dashboardSize == 'Small' ? size.small : size.normal tb = table.new(table_position, 7, 7 , bgcolor = #1e222d , border_color = #373a46 , border_width = 1 , frame_color = #373a46 , frame_width = 1) if showDashboard if barstate.islast tb.cell(0, 2, autopilotMode == 'Off' ? "🔎 Optimal Sensivity" : "✈️ Autopilot Enabled", text_color = color.white, text_size = table_size, text_halign = text.align_left) tb.cell(0, 3, str.tostring(trendIndication) + "Trend Strength", text_color = color.white, text_size = table_size, text_halign = text.align_left) tb.cell(0, 4, volatilityEmoji+ " Lux Volatility", text_color = color.white, text_size = table_size, text_halign = text.align_left) tb.cell(0, 5, "🔃 Squeeze", text_color = color.white, text_size = table_size, text_halign = text.align_left) tb.cell(0, 6, "💧 Volume Sentiment", text_color = color.white, text_size = table_size, text_halign = text.align_left) tb.cell(1, 2, autopilotMode, text_color = color.white, text_size = table_size) tb.cell(1, 3, str.tostring(trendStrengthMetric, format.percent), text_color=trendStrengthTextColor, text_size=table_size, bgcolor = trendStrengthCellColor) tb.cell(1, 4, volatilityText, text_color = VolatilityTextColor, text_size = table_size, bgcolor = volatilityCellColor) tb.cell(1, 5, str.tostring(squeezeMetric, format.percent), text_color= squeezeTextColor, text_size=table_size, bgcolor = squeezeCellColor) tb.cell(1, 6, str.tostring(math.min(volumeSentiment, 100.), format.percent), text_color = volumeTextColor, text_size = table_size, bgcolor = volumeCellColor) //************************************************************************************************************ // REV ZONES //************************************************************************************************************ indiSet = false source = hlc3 type = 'SuperSmoother' length = 100 innermult = 1.0 outermult = 2.415 ChartSet = false drawchannel = true displayzone = true zonetransp = 60 displayline = true MTFSet = false enable_mtf = true mtf_disp_typ = 'On Hover' mtf_typ = 'Auto' mtf_lvl1 = 'D' mtf_lvl2 = 'W' //************************************************************************************************************ // Functions Start { //************************************************************************************************************ var pi = 2 * math.asin(1) var mult = pi * innermult var mult2 = pi * outermult var gradsize = 0.5 var gradtransp = zonetransp //----------------------- // Ehler SwissArmyKnife Function //----------------------- SAK_smoothing(_type, _src, _length) => c0 = 1.0 c1 = 0.0 b0 = 1.0 b1 = 0.0 b2 = 0.0 a1 = 0.0 a2 = 0.0 alpha = 0.0 beta = 0.0 gamma = 0.0 cycle = 2 * pi / _length if _type == 'Ehlers EMA' alpha := (math.cos(cycle) + math.sin(cycle) - 1) / math.cos(cycle) b0 := alpha a1 := 1 - alpha a1 if _type == 'Gaussian' beta := 2.415 * (1 - math.cos(cycle)) alpha := -beta + math.sqrt(beta * beta + 2 * beta) c0 := alpha * alpha a1 := 2 * (1 - alpha) a2 := -(1 - alpha) * (1 - alpha) a2 if _type == 'Butterworth' beta := 2.415 * (1 - math.cos(cycle)) alpha := -beta + math.sqrt(beta * beta + 2 * beta) c0 := alpha * alpha / 4 b1 := 2 b2 := 1 a1 := 2 * (1 - alpha) a2 := -(1 - alpha) * (1 - alpha) a2 if _type == 'BandStop' beta := math.cos(cycle) gamma := 1 / math.cos(cycle * 2 * 0.1) // delta default to 0.1. Acceptable delta -- 0.05<d<0.5 alpha := gamma - math.sqrt(gamma * gamma - 1) c0 := (1 + alpha) / 2 b1 := -2 * beta b2 := 1 a1 := beta * (1 + alpha) a2 := -alpha a2 if _type == 'SMA' c1 := 1 / _length b0 := 1 / _length a1 := 1 a1 if _type == 'EMA' alpha := 2 / (_length + 1) b0 := alpha a1 := 1 - alpha a1 if _type == 'RMA' alpha := 1 / _length b0 := alpha a1 := 1 - alpha a1 _Input = _src _Output = 0.0 _Output := c0 * (b0 * _Input + b1 * nz(_Input[1]) + b2 * nz(_Input[2])) + a1 * nz(_Output[1]) + a2 * nz(_Output[2]) - c1 * nz(_Input[_length]) _Output //----------------------- // SuperSmoother Function //----------------------- supersmoother(_src, _length) => s_a1 = math.exp(-math.sqrt(2) * pi / _length) s_b1 = 2 * s_a1 * math.cos(math.sqrt(2) * pi / _length) s_c3 = -math.pow(s_a1, 2) s_c2 = s_b1 s_c1 = 1 - s_c2 - s_c3 ss = 0.0 ss := s_c1 * _src + s_c2 * nz(ss[1], _src[1]) + s_c3 * nz(ss[2], _src[2]) ss //----------------------- // Auto TimeFrame Function //----------------------- // ————— Converts current chart resolution into a float minutes value. f_resInMinutes() => _resInMinutes = timeframe.multiplier * (timeframe.isseconds ? 1. / 60 : timeframe.isminutes ? 1. : timeframe.isdaily ? 60. * 24 : timeframe.isweekly ? 60. * 24 * 7 : timeframe.ismonthly ? 60. * 24 * 30.4375 : na) _resInMinutes get_tf(_lvl) => y = f_resInMinutes() z = timeframe.period if mtf_typ == 'Auto' if y < 1 z := _lvl == 1 ? '1' : _lvl == 2 ? '5' : z z else if y <= 3 z := _lvl == 1 ? '5' : _lvl == 2 ? '15' : z z else if y <= 10 z := _lvl == 1 ? '15' : _lvl == 2 ? '60' : z z else if y <= 30 z := _lvl == 1 ? '60' : _lvl == 2 ? '240' : z z else if y <= 120 z := _lvl == 1 ? '240' : _lvl == 2 ? 'D' : z z else if y <= 240 z := _lvl == 1 ? 'D' : _lvl == 2 ? 'W' : z z else if y <= 1440 z := _lvl == 1 ? 'W' : _lvl == 2 ? 'M' : z z else if y <= 10080 z := _lvl == 1 ? 'M' : z z else z := z z else z := _lvl == 1 ? mtf_lvl1 : _lvl == 2 ? mtf_lvl2 : z z z //----------------------- // Mean Reversion Channel Function //----------------------- get_mrc() => v_condition = 0 v_meanline = source v_meanrange = supersmoother(ta.tr, length) //-- Get Line value if type == 'SuperSmoother' v_meanline := supersmoother(source, length) v_meanline if type != 'SuperSmoother' v_meanline := SAK_smoothing(type, source, length) v_meanline v_upband1 = v_meanline + v_meanrange * mult v_loband1 = v_meanline - v_meanrange * mult v_upband2 = v_meanline + v_meanrange * mult2 v_loband2 = v_meanline - v_meanrange * mult2 //-- Check Condition if close > v_meanline v_upband2_1 = v_upband2 + v_meanrange * gradsize * 4 v_upband2_9 = v_upband2 + v_meanrange * gradsize * -4 if high >= v_upband2_9 and high < v_upband2 v_condition := 1 v_condition else if high >= v_upband2 and high < v_upband2_1 v_condition := 2 v_condition else if high >= v_upband2_1 v_condition := 3 v_condition else if close <= v_meanline + v_meanrange v_condition := 4 v_condition else v_condition := 5 v_condition if close < v_meanline v_loband2_1 = v_loband2 - v_meanrange * gradsize * 4 v_loband2_9 = v_loband2 - v_meanrange * gradsize * -4 if low <= v_loband2_9 and low > v_loband2 v_condition := -1 v_condition else if low <= v_loband2 and low > v_loband2_1 v_condition := -2 v_condition else if low <= v_loband2_1 v_condition := -3 v_condition else if close >= v_meanline + v_meanrange v_condition := -4 v_condition else v_condition := -5 v_condition [v_meanline, v_meanrange, v_upband1, v_loband1, v_upband2, v_loband2, v_condition] //----------------------- // MTF Analysis //----------------------- get_stat(_cond) => ret = 'Price at Mean Line\n' if _cond == 1 ret := 'Overbought (Weak)\n' ret else if _cond == 2 ret := 'Overbought\n' ret else if _cond == 3 ret := 'Overbought (Strong)\n' ret else if _cond == 4 ret := 'Price Near Mean\n' ret else if _cond == 5 ret := 'Price Above Mean\n' ret else if _cond == -1 ret := 'Oversold (Weak)\n' ret else if _cond == -2 ret := 'Oversold\n' ret else if _cond == -3 ret := 'Oversold (Strong)\n' ret else if _cond == -4 ret := 'Price Near Mean\n' ret else if _cond == -5 ret := 'Price Below Mean\n' ret ret //----------------------- // Chart Drawing Function //----------------------- format_price(x) => y = str.tostring(x, '0.00000') if x > 10 y := str.tostring(x, '0.000') y if x > 1000 y := str.tostring(x, '0.00') y y f_PriceLine(_ref, linecol) => line.new(x1=bar_index, x2=bar_index - 1, y1=_ref, y2=_ref, extend=extend.left, color=linecol) f_MTFLabel(_txt, _yloc) => label.new(x=time + math.round(ta.change(time) * 20), y=_yloc, xloc=xloc.bar_time, text=mtf_disp_typ == 'Always Display' ? _txt : 'Check MTF', tooltip=mtf_disp_typ == 'Always Display' ? '' : _txt, color=color.black, textcolor=color.white, size=size.normal, style=mtf_disp_typ == 'On Hover' and displayline ? label.style_label_lower_left : label.style_label_left, textalign=text.align_left) //} Function End //************************************************************************************************************ // Calculate Channel //************************************************************************************************************ var tf_0 = timeframe.period var tf_1 = get_tf(1) var tf_2 = get_tf(2) textstylist = table.new(textVPosition + '_' + textHPosition, 1, 3) [meanline, meanrange, upband1, loband1, upband2, loband2, condition] = get_mrc() [mtf1_meanline, mtf1_meanrange, mtf1_upband1, mtf1_loband1, mtf1_upband2, mtf1_loband2, mtf1_condition] = request.security(syminfo.tickerid, tf_1, get_mrc()) [mtf2_meanline, mtf2_meanrange, mtf2_upband1, mtf2_loband1, mtf2_upband2, mtf2_loband2, mtf2_condition] = request.security(syminfo.tickerid, tf_2, get_mrc()) //************************************************************************************************************ // Drawing Start { //************************************************************************************************************ float p_meanline = drawchannel ? meanline : na float p_upband1 = drawchannel ? upband1 : na float p_loband1 = drawchannel ? loband1 : na float p_upband2 = drawchannel ? upband2 : na float p_loband2 = drawchannel ? loband2 : na //z = plot(p_meanline, color=color.new(#FFCD00, 0), style=plot.style_line, title=' Mean', linewidth=2) //x1 = plot(p_upband1, color=color.new(color.green, 50), style=plot.style_circles, title=' R1', linewidth=1) //x2 = plot(p_loband1, color=color.new(color.green, 50), style=plot.style_circles, title=' S1', linewidth=1) //y1 = plot(p_upband2, color=color.new(color.red, 50), style=plot.style_line, title=' R2', linewidth=1) //y2 = plot(p_loband2, color=color.new(color.red, 50), style=plot.style_line, title=' S2', linewidth=1) //----------------------- // Draw zone //----------------------- //--- var color1 = #FF0000 var color2 = #FF4200 var color3 = #FF5D00 var color4 = #FF7400 var color5 = #FF9700 var color6 = #FFAE00 var color7 = #FFC500 var color8 = #FFCD00 //--- float upband2_1 = drawchannel and displayzone ? upband2 + meanrange * gradsize * 4 : na float loband2_1 = drawchannel and displayzone ? loband2 - meanrange * gradsize * 4 : na float upband2_2 = drawchannel and displayzone ? upband2 + meanrange * gradsize * 3 : na float loband2_2 = drawchannel and displayzone ? loband2 - meanrange * gradsize * 3 : na float upband2_3 = drawchannel and displayzone ? upband2 + meanrange * gradsize * 2 : na float loband2_3 = drawchannel and displayzone ? loband2 - meanrange * gradsize * 2 : na float upband2_4 = drawchannel and displayzone ? upband2 + meanrange * gradsize * 1 : na float loband2_4 = drawchannel and displayzone ? loband2 - meanrange * gradsize * 1 : na float upband2_5 = drawchannel and displayzone ? upband2 + meanrange * gradsize * 0 : na float loband2_5 = drawchannel and displayzone ? loband2 - meanrange * gradsize * 0 : na float upband2_6 = drawchannel and displayzone ? upband2 + meanrange * gradsize * -1 : na float loband2_6 = drawchannel and displayzone ? loband2 - meanrange * gradsize * -1 : na float upband2_7 = drawchannel and displayzone ? upband2 + meanrange * gradsize * -2 : na float loband2_7 = drawchannel and displayzone ? loband2 - meanrange * gradsize * -2 : na float upband2_8 = drawchannel and displayzone ? upband2 + meanrange * gradsize * -3 : na float loband2_8 = drawchannel and displayzone ? loband2 - meanrange * gradsize * -3 : na float upband2_9 = drawchannel and displayzone ? upband2 + meanrange * gradsize * -4 : na float loband2_9 = drawchannel and displayzone ? loband2 - meanrange * gradsize * -4 : na table.cell(textstylist, 0, 0, title, width, height, c_title, a_title, text_size=s_title, bgcolor=c_bg) up1 = plot(reversalZone ? upband2_1 : na, color = color.black, transp = 100, editable = false) up2 = plot(reversalZone ?upband2_5:na, color = color.black, transp = 100, editable = false) up3 = plot(reversalZone ?upband2_9:na, color = color.black, transp = 100, editable = false) dp1 = plot(reversalZone ?loband2_1:na, color = color.black, transp = 100, editable = false) dp2 = plot(reversalZone ?loband2_5:na, color = color.black, transp = 100, editable = false) dp3 = plot(reversalZone ?loband2_9:na, color = color.black, transp = 100, editable = false) fill(up1, up2, color = #56202d, transp = 20, editable = false) fill(up2, up3, color = #3f1d29, transp = 60, editable = false) fill(dp1, dp2, color = #0f3e3f, transp = 20, editable = false) fill(dp2, dp3, color = #113135, transp = 60, editable = false) //[upband2_1, upband2_5, upband2_9, loband2_1, loband2_5, loband2_9] tenkan_len = 365 tenkan_mult = 3 kijun_len = 365 kijun_mult = 7 spanB_len = 365 spanB_mult = 15 offset = 2 //------------------------------------------------------------------------------ avg(src,length,mult)=> atr = ta.atr(length)*mult up = hl2 + atr dn = hl2 - atr upper = 0.,lower = 0. upper := src[1] < upper[1] ? math.min(up,upper[1]) : up lower := src[1] > lower[1] ? math.max(dn,lower[1]) : dn os = 0,max = 0.,min = 0. os := src > upper ? 1 : src < lower ? 0 : os[1] spt = os == 1 ? lower : upper max := ta.cross(src,spt) ? math.max(src,max[1]) : os == 1 ? math.max(src,max[1]) : spt min := ta.cross(src,spt) ? math.min(src,min[1]) : os == 0 ? math.min(src,min[1]) : spt math.avg(max,min) //------------------------------------------------------------------------------ tenkan = avg(close,tenkan_len,tenkan_mult) kijun = avg(close,kijun_len,kijun_mult) senkouA = math.avg(kijun,tenkan) senkouB = avg(close,spanB_len,spanB_mult) //------------------------------------------------------------------------------ tenkan_css = #2156f300 kijun_css = #ff5e0000 cloud_a = color.new(#006989, 47) cloud_b = color.new(#ff5252, 66) chikou_css = #7b1fa2 plot(neoCloud ? tenkan : na,'Tenkan-Sen',tenkan_css, editable = false) plot(neoCloud ? kijun : na,'Kijun-Sen',kijun_css, editable = false) plot(neoCloud and ta.crossover(tenkan,kijun) ? kijun : na,'Crossover',#2156f300,3,plot.style_circles, editable = false) plot(neoCloud and ta.crossunder(tenkan,kijun) ? kijun : na,'Crossunder',#ff5e0000,3,plot.style_circles, editable = false) A = plot(neoCloud ? senkouA: na,'Senkou Span A',na,offset=offset-1, editable = false) B = plot(neoCloud ? senkouB : na,'Senkou Span B',na,offset=offset-1, editable = false) fill(A,B,senkouA > senkouB ? cloud_a : cloud_b) lastNeo = int(senkouA + senkouB) last5Neo = ta.sma(lastNeo, 2) plot(close,'Chikou',chikou_css,offset=-offset+1,display=display.none, editable = false) // Wylicz pozycję kwadratu ltp1 = bar_index rtp1 = bar_index + 40 [lowBound, midBound, highBound] = LAF.getTPSLBoxes(6.0) // Stwórz rzeczywisty kwadrat //tp1box = box.new(left=ltp1, top=ttp1, right=rtp1, bottom=btp1, border_color=#3666f5, border_width=2, border_style=line.style_solid, bgcolor=color.new(#3666f5, 53), text="TP1 : " + str.tostring(close), text_size=size.large, text_color=color.new(#3666f5, 0), text_wrap=text.wrap_auto) //var boxes = array.new<box>() //boxes.push(box.new(left = ltp1, top = close+highBound, right = rtp1, bottom = close + midBound, border_color=#3666f5, border_width=2, border_style=line.style_solid, bgcolor=color.new(#3666f5, 70), text="TP/SL 2 : " + str.tostring(close), text_size=size.large, text_color=color.new(#3666f5, 0), text_wrap=text.wrap_auto)) //boxes.push(box.new(left = ltp1, top = close+midBound, right = rtp1, bottom = close + lowBound, border_color=#3666f5, border_width=2, border_style=line.style_solid, bgcolor=color.new(#3666f5, 40), text="TP/SL 1 : " + str.tostring(close), text_size=size.large, text_color=color.new(#3666f5, 0), text_wrap=text.wrap_auto)) //SL1 = box.new(left = ltp1, top = close-highBound, right = rtp1, bottom = close - midBound, border_color=#3666f5, border_width=2, border_style=line.style_solid, bgcolor=color.new(#3666f5, 70), text="TP/SL 2 : " + str.tostring(close), text_size=size.large, text_color=color.new(#3666f5, 0), text_wrap=text.wrap_auto) //SL2 = box.new(left = ltp1, top = close-midBound, right = rtp1, bottom = close - lowBound, border_color=#3666f5, border_width=2, border_style=line.style_solid, bgcolor=color.new(#3666f5, 40), text="TP/SL 1 : " + str.tostring(close), text_size=size.large, text_color=color.new(#3666f5, 0), text_wrap=text.wrap_auto) // Usuń poprzednie ramki //box.delete(boxes.shift()) //box.delete(SL1[1]) //box.delete(SL2[1]) //box.delete(boxes.shift()) // ==== Overview ==== // ================== // WaveTrend 3D (WT3D) is a novel implementation of the famous WaveTrend (WT) indicator and has been completely redesigned from the ground up to address some // of the inherent shortcomings associated with the traditional WT algorithm, including: // (1) unbounded extremes // (2) susceptibility to whipsaw // (3) lack of insight into other timeframes // Furthermore, WT3D expands upon the original functionality of WT by providing: // (1) first-class support for multi-timeframe (MTF) analysis // (2) kernel-based regression for trend reversal confirmation // (3) various options for signal smoothing and transformation // (4) a unique mode for visualizing an input series as a symmetrical, three-dimensional waveform useful for pattern identification and cycle-related analysis // Fundamental Assumptions: // (1) There exists a probability density function that describes the relative likelihood for a price to visit a given value. // (2) The probability density function for price is a function of time. // (3) The probability density function can approximate a Gaussian distribution (shown below). // ___ // .::~!:.. | // :ΞΞΞΞ~!ΞΞΞ!. | // .ΞJΞΞΞΞ~!ΞΞΞ?J^ | // :J?ΞΞΞΞΞ~!ΞΞΞΞΞJ^ | // :J?ΞΞΞΞΞΞ~!ΞΞΞΞΞΞ??. | // :JΞΞΞΞΞΞΞΞ~!ΞΞΞΞΞΞΞ?J^ | // :JΞΞΞΞΞΞΞΞΞ~!ΞΞΞΞΞΞΞΞ?J^ [ PRICE ] // .:~ΞΞΞΞΞΞΞΞΞΞ~!ΞΞΞΞΞΞΞΞΞ!!~ | // :?~^ΞΞΞΞΞΞΞΞΞΞ~!ΞΞΞΞΞΞΞΞΞ!^Ξ! | // ~:^^^ΞΞΞΞΞΞΞΞΞΞ~!ΞΞΞΞΞΞΞΞΞ!^^!Ξ. | // .Ξ!^^^^ΞΞΞΞΞΞΞΞΞΞ~!ΞΞΞΞΞΞΞΞΞ!^^^~Ξ~ | // .~Ξ~^^^^^ΞΞΞΞΞΞΞΞΞΞ~!ΞΞΞΞΞΞΞΞΞ!^^^^^!Ξ: | // .~Ξ~^^^^^^^ΞΞΞΞΞΞΞΞΞΞ~!ΞΞΞΞΞΞΞΞΞ!^^^^^^~!!^. | // ....::^^!~~^^^^^^^^^ΞΞΞΞΞΞΞΞΞΞ~!ΞΞΞΞΞΞΞΞΞ!^^^^^^^^^~!^^::...... | // ..:::^^^^^^^::::::::::::::ΞΞΞΞΞΞΞΞΞΞ~!ΞΞΞΞΞΞΞΞΞ!::::::::::::^^^^^^^^:::.. | // // -------------------------------- [ TIME ] -------------------------------| // How to use this indicator: // - The basic usage of WT3D is similar to how one would use the traditional WT indicator. // - Divergences can be spotted by finding "trigger waves", which are small waves that immediately follow a larger wave. These can also be thought of as Lower-Highs and Higher-Lows in the oscillator. // - Instead of the SMA-cross in the original WT, the primary mechanism for identifying potential pivots are the crossovers of the fast/normal speed oscillators, denoted by the small red/green circles. // - The larger red/green circles represent points where there could be a potential trigger wave for a Divergence. Settings related to Divergence detection can be configured in the "Divergence" section. // - For overbought/oversold conditions, the 0.5 and -0.5 levels are convenient since the normal-speed oscillator will only exceed this level ~25% of the time. // - For less experienced users, focusing on the three oscillators is recommended since they give critical information from multiple timeframes that can help to identify trends and spot potential divergences. // - For more experienced users, this indicator also has many other valuable features, such as Center of Gravity (CoG) smoothing, Kernel Estimate Crossovers, a mirrored mode for cycle analysis, and more. // - Note: Additional resources for learning/using the more advanced features of this indicator are a work in progress, but in the meantime, I am happy to answer any questions. // ================ // ==== Inputs ==== // ================ // Signal Settings src = close useMirror = false useEma = false emaLength = 3 useCog = false cogLength = 6 oscillatorLookback =20 quadraticMeanLength = 50 src := useEma ? ta.ema(src, emaLength) : src src := useCog ? ta.cog(src, cogLength) : src speedToEmphasize = 'Normal' emphasisWidth = 2 useKernelMA = false useKernelEmphasis = false // Oscillator Settings offset := 0 showOsc = true showOsc := showOsc float f_length = 0.75 float f_smoothing = 0.45 float n_length = 1.0 float n_smoothing = 1.0 float s_length = 1.75 float s_smoothing = 2.5 // Divergence Detection divThreshold = 30 sizePercent = 40 // Overbought/Oversold Zones (Reversal Zones) showObOs = false invertObOsColors = false // Transparencies and Gradients areaBackgroundTrans = 128. areaForegroundTrans = 64. lineBackgroundTrans = 2.6 lineForegroundTrans = 2. customTransparency = 30 maxStepsForGradient = 8 // The defaults are colors that Google uses for its Data Science libraries (e.g. TensorFlow). They are considered to be colorblind-safe. var color fastBullishColor = color.black var color normalBullishColor = color.black var color slowBullishColor = color.black var color fastBearishColor = color.black var color normalBearishColor = color.black var color slowBearishColor =color.black var color c_bullish = color.black var color c_bearish = color.black lineBackgroundTrans := lineBackgroundTrans * customTransparency areaBackgroundTrans := areaBackgroundTrans * customTransparency lineForegroundTrans := lineForegroundTrans * customTransparency areaForegroundTrans := areaForegroundTrans * customTransparency areaFastTrans = areaBackgroundTrans lineFastTrans = lineBackgroundTrans areaNormalTrans = areaBackgroundTrans lineNormalTrans = lineBackgroundTrans areaSlowTrans = areaForegroundTrans lineSlowTrans = lineForegroundTrans switch speedToEmphasize "Slow" => areaFastTrans := areaBackgroundTrans lineFastTrans := lineBackgroundTrans areaNormalTrans := areaBackgroundTrans lineNormalTrans := lineBackgroundTrans areaSlowTrans := areaForegroundTrans lineSlowTrans := lineForegroundTrans "Normal" => areaFastTrans := areaBackgroundTrans lineFastTrans := lineBackgroundTrans areaNormalTrans := areaForegroundTrans lineNormalTrans := lineForegroundTrans areaSlowTrans := areaBackgroundTrans lineSlowTrans := lineBackgroundTrans "Fast" => areaFastTrans := areaForegroundTrans lineFastTrans := lineForegroundTrans areaNormalTrans := areaBackgroundTrans lineNormalTrans := lineBackgroundTrans areaSlowTrans := areaBackgroundTrans lineSlowTrans := lineBackgroundTrans "None" => areaFastTrans := areaBackgroundTrans lineFastTrans := lineBackgroundTrans areaNormalTrans := areaBackgroundTrans lineNormalTrans := lineBackgroundTrans areaSlowTrans := areaBackgroundTrans lineSlowTrans := lineBackgroundTrans // ================================= // ==== Color Helper Functions ===== // ================================= getPlotColor(signal, bullColor, bearColor) => signal >= 0.0 ? bullColor : bearColor getAreaColor(signal, useMomentum, bullColor, bearColor) => if useMomentum ta.rising(signal, 1) ? bullColor : bearColor else signal >= 0.0 ? bullColor : bearColor getColorGradientFromSteps(_source, _center, _steps, weakColor, strongColor) => var float _qtyAdvDec = 0. var float _maxSteps = math.max(1, _steps) bool _xUp = ta.crossover(_source, _center) bool _xDn = ta.crossunder(_source, _center) float _chg = ta.change(_source) bool _up = _chg > 0 bool _dn = _chg < 0 bool _srcBull = _source > _center bool _srcBear = _source < _center _qtyAdvDec := _srcBull ? _xUp ? 1 : _up ? math.min(_maxSteps, _qtyAdvDec + 1) : _dn ? math.max(1, _qtyAdvDec - 1) : _qtyAdvDec : _srcBear ? _xDn ? 1 : _dn ? math.min(_maxSteps, _qtyAdvDec + 1) : _up ? math.max(1, _qtyAdvDec - 1) : _qtyAdvDec : _qtyAdvDec color colorGradient = color.from_gradient(_qtyAdvDec, 1, _maxSteps, weakColor, strongColor) colorGradient getColorGradientFromSource(series, _min, _max, weakColor, strongColor) => var float baseLineSeries = _min + (_max - _min) / 2 color colorGradient = series >= baseLineSeries ? color.from_gradient(value=series, bottom_value=baseLineSeries, top_value=_max, bottom_color=weakColor, top_color=strongColor) : color.from_gradient(series, _min, baseLineSeries, strongColor, weakColor) colorGradient // ================================ // ==== Main Helper Functions ===== // ================================ normalizeDeriv(_src, _quadraticMeanLength) => float derivative = _src - _src[2] quadraticMean = math.sqrt(nz(math.sum(math.pow(derivative, 2), _quadraticMeanLength) / _quadraticMeanLength)) derivative/quadraticMean tanh(series float _src) => -1 + 2/(1 + math.exp(-2*_src)) dualPoleFilter(float _src, float _lookback) => float _omega = -99 * math.pi / (70 * _lookback) float _alpha = math.exp(_omega) float _beta = -math.pow(_alpha, 2) float _gamma = math.cos(_omega) * 2 * _alpha float _delta = 1 - _gamma - _beta float _slidingAvg = 0.5 * (_src + nz(_src[1], _src)) float _filter = na _filter := (_delta*_slidingAvg) + _gamma*nz(_filter[1]) + _beta*nz(_filter[2]) _filter getOscillator(float src, float smoothingFrequency, int quadraticMeanLength) => nDeriv = normalizeDeriv(src, quadraticMeanLength) hyperbolicTangent = tanh(nDeriv) result = dualPoleFilter(hyperbolicTangent, smoothingFrequency) // ================================= // ==== Oscillator Calculations ==== // ================================= // Fast Oscillator + Mirror offsetFast = offset f_lookback = f_smoothing * oscillatorLookback signalFast = getOscillator(src, f_lookback, quadraticMeanLength) seriesFast = f_length*signalFast+offsetFast seriesFastMirror = useMirror ? -seriesFast + 2*offsetFast : na // Normal Oscillator + Mirror offsetNormal = 0 n_lookback = n_smoothing * oscillatorLookback signalNormal = getOscillator(src, n_lookback, quadraticMeanLength) seriesNormal = n_length*signalNormal+offsetNormal seriesNormalMirror = useMirror ? -seriesNormal + 2*offsetNormal : na // Slow Oscillator + Mirror offsetSlow = -offset s_lookback = s_smoothing * oscillatorLookback signalSlow = getOscillator(src, s_lookback, quadraticMeanLength) seriesSlow = s_length*signalSlow+offsetSlow seriesSlowMirror = useMirror ? -seriesSlow + 2*offsetSlow : na // ===================================== // ==== Color Gradient Calculations ==== // ===================================== // Fast Color Gradients (Areas and Lines) fastBaseColor = getPlotColor(signalFast, fastBullishColor, fastBearishColor) fastBaseColorInverse = getPlotColor(signalFast, fastBearishColor, fastBullishColor) fastAreaGradientFromSource = getColorGradientFromSource(seriesFast, -1.+offsetFast, 1+offsetFast, color.new(fastBaseColor, areaFastTrans), fastBaseColor) fastAreaGradientFromSteps = getColorGradientFromSteps(seriesFast, offsetFast, maxStepsForGradient, color.new(fastBaseColor, areaFastTrans), fastBaseColor) fastLineGradientFromSource = getColorGradientFromSource(seriesFast, -1+offsetFast, 1+offsetFast, color.new(fastBaseColor, lineFastTrans), fastBaseColor) fastLineGradientFromSteps = getColorGradientFromSteps(seriesFast, offsetFast, maxStepsForGradient, color.new(fastBaseColor, lineFastTrans), fastBaseColor) fastAreaGradientFromSourceInverse = getColorGradientFromSource(seriesFast, -1.+offsetFast, 1+offsetFast, color.new(fastBaseColorInverse, areaFastTrans), fastBaseColorInverse) fastAreaGradientFromStepsInverse = getColorGradientFromSteps(seriesFast, offsetFast, maxStepsForGradient, color.new(fastBaseColorInverse, areaFastTrans), fastBaseColorInverse) // Normal Color Gradients (Areas and Lines) normalBaseColor = getPlotColor(signalNormal, normalBullishColor, normalBearishColor) normalBaseColorInverse = getPlotColor(signalNormal, normalBearishColor, normalBullishColor) normalAreaGradientFromSource = getColorGradientFromSource(seriesNormal, -1.+offsetNormal, 1.+offsetNormal, color.new(normalBaseColor, areaNormalTrans), normalBaseColor) normalAreaGradientFromSteps = getColorGradientFromSteps(seriesNormal, offsetNormal, maxStepsForGradient, color.new(normalBaseColor, areaNormalTrans), normalBaseColor) normalLineGradientFromSource = getColorGradientFromSource(seriesNormal, -1+offsetNormal, 1+offsetNormal, color.new(normalBaseColor, lineNormalTrans), normalBaseColor) normalLineGradientFromSteps = getColorGradientFromSteps(seriesNormal, offsetNormal, maxStepsForGradient, color.new(normalBaseColor, lineNormalTrans), normalBaseColor) normalAreaGradientFromSourceInverse = getColorGradientFromSource(seriesNormal, -1.+offsetNormal, 1.+offsetNormal, color.new(normalBaseColorInverse, areaNormalTrans), normalBaseColorInverse) normalAreaGradientFromStepsInverse = getColorGradientFromSteps(seriesNormal, offsetNormal, maxStepsForGradient, color.new(normalBaseColorInverse, areaNormalTrans), normalBaseColorInverse) // Slow Color Gradients (Areas and Lines) slowBaseColor = getPlotColor(signalSlow, slowBullishColor, slowBearishColor) slowBaseColorInverse = getPlotColor(signalSlow, slowBearishColor, slowBullishColor) slowAreaGradientFromSource = getColorGradientFromSource(seriesSlow, -1.75+offsetSlow, 1.75+offsetSlow, color.new(slowBaseColor, areaSlowTrans), slowBaseColor) slowAreaGradientFromSteps = getColorGradientFromSteps(seriesSlow, offsetSlow, maxStepsForGradient, color.new(slowBaseColor, areaSlowTrans), slowBaseColor) slowLineGradientFromSource = getColorGradientFromSource(seriesSlow, -1.75+offsetSlow, 1.75+offsetSlow, color.new(slowBaseColor, lineSlowTrans), slowBaseColor) slowLineGradientFromSteps = getColorGradientFromSteps(seriesSlow, offsetSlow, maxStepsForGradient, color.new(slowBaseColor, lineSlowTrans), slowBaseColor) slowAreaGradientFromSourceInverse = getColorGradientFromSource(seriesSlow, -1.75+offsetSlow, 1.75+offsetSlow, color.new(slowBaseColorInverse, areaSlowTrans), slowBaseColorInverse) slowAreaGradientFromStepsInverse = getColorGradientFromSteps(seriesSlow, offsetSlow, maxStepsForGradient, color.new(slowBaseColorInverse, areaSlowTrans), slowBaseColorInverse) // ========================================= // ==== Plot Parameters and Logic Gates ==== // ========================================= // Speed Booleans isSlow = speedToEmphasize == "Slow" isNormal = speedToEmphasize == "Normal" isFast = speedToEmphasize == "Fast" // Series Colors seriesSlowColor = showOsc or isSlow ? color.new(slowLineGradientFromSource, lineSlowTrans) : na seriesNormalColor = showOsc or isNormal ? color.new(normalLineGradientFromSource, lineNormalTrans) : na seriesFastColor = showOsc or isFast ? color.new(fastLineGradientFromSource, lineFastTrans) : na seriesSlowMirrorColor = useMirror ? seriesSlowColor : na seriesNormalMirrorColor = useMirror ? seriesNormalColor : na seriesFastMirrorColor = useMirror ? seriesFastColor : na // Series Line Widths seriesSlowWidth = isSlow ? emphasisWidth : 1 seriesNormalWidth = isNormal ? emphasisWidth : 1 seriesFastWidth = isFast ? emphasisWidth : 1 seriesSlowMirrorWidth = useMirror ? seriesSlowWidth : na seriesNormalMirrorWidth = useMirror ? seriesNormalWidth : na seriesFastMirrorWidth = useMirror ? seriesFastWidth : na // Speed Related Switches seriesEmphasis = switch isFast => seriesFast isNormal => seriesNormal isSlow => seriesSlow => na // colorLineEmphasis = switch isFast => fastLineGradientFromSource isNormal => normalLineGradientFromSource isSlow => slowLineGradientFromSource => na colorAreaEmphasis = switch isFast => fastAreaGradientFromSource isNormal => normalAreaGradientFromSource isSlow => slowAreaGradientFromSource => na // Crossover Signals bearishCross = ta.crossunder(seriesFast, seriesNormal) and seriesNormal > 0 bullishCross = ta.crossover(seriesFast, seriesNormal) and seriesNormal < 0 slowBearishMedianCross = ta.crossunder(seriesSlow, 0) slowBullishMedianCross = ta.crossover(seriesSlow, 0) normalBearishMedianCross = ta.crossunder(seriesNormal, 0) normalBullishMedianCross = ta.crossover(seriesNormal, 0) fastBearishMedianCross = ta.crossunder(seriesFast, 0) fastBullishMedianCross = ta.crossover(seriesFast, 0) // Last Crossover Values lastBearishCrossValue = ta.valuewhen(condition=bearishCross, source=seriesNormal, occurrence=1) lastBullishCrossValue = ta.valuewhen(condition=bullishCross , source=seriesNormal, occurrence=1) // Trigger Wave Size Comparison triggerWaveFactor = sizePercent/100 isSmallerBearishCross = bearishCross and seriesNormal < lastBearishCrossValue * triggerWaveFactor isSmallerBullishCross = bullishCross and seriesNormal > lastBullishCrossValue * triggerWaveFactor // =========================== // ==== Kernel Estimators ==== // =========================== // The following kernel estimators are based on the Gaussian Kernel. // They are used for: // (1) Confirming directional changes in the slow oscillator (i.e. a type of trend filter) // (2) Visualizing directional changes as a dynamic ribbon (i.e. an additional oscillator that can crossover with the user specified oscillator of interest) // (3) Visualizing transient directional changes while in the midst of a larger uptrend or downtrend (i.e. via color changes on the ribbon) // Gaussian Kernel with a lookback of 6 bars, starting on bar 6 of the chart (medium fit) yhat0 = kernels.gaussian(seriesEmphasis, 6, 6) // Gaussian Kernel with a lookback of 3 bars, starting on bar 2 of the chart (tight fit) yhat1 = kernels.gaussian(seriesEmphasis, 3, 2) // Trend Assessment based on the relative position of the medium fit kernel to the slow oscillator isBearishKernelTrend = yhat0 < seriesSlow isBullishKernelTrend = yhat0 > seriesSlow // Divergence Signals isBearishDivZone = ta.barssince(bearishCross[1]) < divThreshold isBullishDivZone = ta.barssince(bullishCross[1]) < divThreshold // Crossover Detection isBearishTriggerWave = isSmallerBearishCross and isBearishDivZone and isBearishKernelTrend isBullishTriggerWave = isSmallerBullishCross and isBullishDivZone and isBullishKernelTrend // ======================= // ==== Plots & Fills ==== var position = 0 length := atrLength minMult = math.max(sensitivity-4, 1) maxMult = math.min(sensitivity, 26) if (autopilotMode == "Short Term") minMult:=1 maxMult := 4 if (autopilotMode == 'Mid Term') minMult := 5 maxMult := 10 if (autopilotMode == 'Long-Term') minMult :=8 maxMult :=13 float step = .5 //Trigger error if minMult > maxMult runtime.error('Minimum factor is greater than maximum factor in the range') float perfAlpha = 10 fromCluster = 'Best' //Optimization maxIter = 250 maxData = 2500 //Style bearCss = color.red bullCss = color.teal amaBearCss = color.new(color.red, 50) amaBullCss = color.new(color.teal, 50) showGradient = true //Dashboard showDash = true //dashboardLocation = input.string('Top Right', 'Location', options = ['Top Right', 'Bottom Right', 'Bottom Left'], group = 'Dashboard') textSize = 'Small' //-----------------------------------------------------------------------------} //UDT's //-----------------------------------------------------------------------------{ type supertrend float upper = hl2 float lower = hl2 float output float perf = 0 float factor int trend = 0 type vector array<float> out //-----------------------------------------------------------------------------} //Supertrend //-----------------------------------------------------------------------------{ var holder = array.new<supertrend>(0) var factors = array.new<float>(0) //Populate supertrend type array if barstate.isfirst for i = 0 to int((maxMult - minMult) / step) factors.push(minMult + i * step) holder.push(supertrend.new()) atr = ta.atr(length) //Compute Supertrend for multiple factors k = 0 for factor in factors get_spt = holder.get(k) up = hl2 + atr * factor dn = hl2 - atr * factor get_spt.trend := close > get_spt.upper ? 1 : close < get_spt.lower ? 0 : get_spt.trend get_spt.upper := close[1] < get_spt.upper ? math.min(up, get_spt.upper) : up get_spt.lower := close[1] > get_spt.lower ? math.max(dn, get_spt.lower) : dn diff = nz(math.sign(close[1] - get_spt.output)) get_spt.perf += 2/(perfAlpha+1) * (nz(close - close[1]) * diff - get_spt.perf) get_spt.output := get_spt.trend == 1 ? get_spt.lower : get_spt.upper get_spt.factor := factor k += 1 //-----------------------------------------------------------------------------} //K-means clustering //-----------------------------------------------------------------------------{ factor_array = array.new<float>(0) data = array.new<float>(0) table.cell(textstylist, 0, 1, subtitle, width, height, c_subtitle, a_subtitle, text_size=s_subtitle, bgcolor=c_bg) //Populate data arrays if last_bar_index - bar_index <= maxData for element in holder data.push(element.perf) factor_array.push(element.factor) //Intitalize centroids using quartiles centroids = array.new<float>(0) centroids.push(data.percentile_linear_interpolation(25)) centroids.push(data.percentile_linear_interpolation(50)) centroids.push(data.percentile_linear_interpolation(75)) //Intialize clusters var array<vector> factors_clusters = na var array<vector> perfclusters = na if last_bar_index - bar_index <= maxData for _ = 0 to maxIter factors_clusters := array.from(vector.new(array.new<float>(0)), vector.new(array.new<float>(0)), vector.new(array.new<float>(0))) perfclusters := array.from(vector.new(array.new<float>(0)), vector.new(array.new<float>(0)), vector.new(array.new<float>(0))) //Assign value to cluster i = 0 for value in data dist = array.new<float>(0) for centroid in centroids dist.push(math.abs(value - centroid)) idx = dist.indexof(dist.min()) perfclusters.get(idx).out.push(value) factors_clusters.get(idx).out.push(factor_array.get(i)) i += 1 //Update centroids new_centroids = array.new<float>(0) for cluster_ in perfclusters new_centroids.push(cluster_.out.avg()) //Test if centroid changed if new_centroids.get(0) == centroids.get(0) and new_centroids.get(1) == centroids.get(1) and new_centroids.get(2) == centroids.get(2) break centroids := new_centroids //-----------------------------------------------------------------------------} //Signals and trailing stop //-----------------------------------------------------------------------------{ //Get associated supertrend var float target_factor = na var float perf_idx = na var float perf_ama = na var from = switch fromCluster 'Best' => 2 'Average' => 1 'Worst' => 0 //Performance index denominator den = ta.ema(math.abs(close - close[1]), int(perfAlpha)) if not na(perfclusters) //Get average factors within target cluster target_factor := nz(factors_clusters.get(from).out.avg(), target_factor) //Get performance index of target cluster perf_idx := math.max(nz(perfclusters.get(from).out.avg()), 0) / den //Get new supertrend var upper = hl2 var lower = hl2 var os = 0 up = hl2 + atr * target_factor dn = hl2 - atr * target_factor upper := close[1] < upper ? math.min(up, upper) : up lower := close[1] > lower ? math.max(dn, lower) : dn os := close > upper ? 1 : close < lower ? 0 : os ts = os ? lower : upper //Get trailing stop adaptive MA if na(ts[1]) and not na(ts) perf_ama := ts else perf_ama += perf_idx * (ts - perf_ama) //-----------------------------------------------------------------------------} //Dashboard //-----------------------------------------------------------------------------{ //-----------------------------------------------------------------------------{ css = os ? bullCss : bearCss plot(showTrailingStoploss ? ts : na, 'Trailing Stop', os != os[1] ? na : css, editable = false) plot(showMovingAverage? perf_ama:na, 'Trailing Stop AMA', ta.cross(close, perf_ama) ? na : close > perf_ama ? amaBullCss : amaBearCss, editable = false) //Candle coloring //barcolor(showGradient ? color.from_gradient(perf_idx, 0, 1, color.new(css, 80), css) : na) //Signals if showSignals if os > os[1] and (signalPresets != "Smart Trail [Filter]" or smartTrailDirection == 'long') and (signalPresets != "Trend Tracer [Filter]" or trendTracerDirection==#02ff65) and (signalPresets != "Trend Strength [Filter]" or trendStrengthMetric >= 25) and (signalPresets != "Trend Catcher [Filter]" or newTrendCatcherColor == #02ff65) and (signalPresets != "Neo Cloud [Filter]" or int(lastNeo) >= last5Neo) int signalStrength = int(perf_idx*10) < 2 ? 1 : int(perf_idx*10) < 4 ? 2 : int(perf_idx*10) < 5 ? 3 : 4 label.new(n, low-ta.atr(30)/2, signalClassifier ? str.tostring(signalStrength) : ema50 > ema200 ? "▲+" : "▲" , color = bullCss , style = label.style_label_up , textcolor = color.white , size = size.small) position := 1 if os < os[1] and (signalPresets != "Smart Trail [Filter]" or smartTrailDirection == 'short') and (signalPresets != "Trend Tracer [Filter]" or trendTracerDirection!=#02ff65) and (signalPresets != "Trend Strength [Filter]" or trendStrengthMetric >= 25)and (signalPresets != "Trend Catcher [Filter]" or newTrendCatcherColor != #02ff65) and (signalPresets != "Neo Cloud [Filter]" or int(lastNeo) <=last5Neo) int signalStrength = int(perf_idx*10) < 2 ? 1 : int(perf_idx*10) < 4 ? 2 : int(perf_idx*10) < 5 ? 3 : 4 label.new(n, high+ta.atr(30)/2, signalClassifier ? str.tostring(signalStrength) : ema50 < ema200 ? "▼+" : "▼" , color = bearCss , style = label.style_label_down , textcolor = color.white , size = size.small) position := -1 // ======================= // Signal Plots //plot(position == 1 and bearishCross ? high+5 : na, title="Bearish Cross", style=plot.style_cross, linewidth=2, color=c_bearish, offset=-1) //plot(position == -1 and bearishCross ? high+5 : na, title="Bearish Cross", style=plot.style_circles, linewidth=2, color=c_bearish, offset=-1) //plot(position == 1 and isBearishTriggerWave ? high+5 : na, title="Bearish Trigger Cross", style=plot.style_cross, linewidth=3, color=c_bearish, offset=-1) //plot(position == -1 and isBearishTriggerWave ? high+5 : na, title="Bearish Trigger Cross", style=plot.style_circles, linewidth=3, color=c_bearish, offset=-1) plotchar(bearishCross and position == 1, "Long", "✖", location.abovebar, color = #4774f5, size = size.tiny, editable = false) //plotchar(bearishCross and position == -1, "Long", "▼", location.abovebar, color = c_bearish, size = size.tiny) plotchar(isBearishTriggerWave and position == 1, "Long", "✖", location.abovebar, color=#4774f5, size = size.tiny, editable = false) //plotchar(isBearishTriggerWave and position == -1, "Long", "▼", location.abovebar, color=c_bearish, size = size.small) //plot(position == 1 and bullishCross ? low -5: na, title="Bullish Cross", style= plot.style_circles, linewidth=2, color=c_bullish, offset=-1) //plot(position == -1 and bullishCross ? low -5: na, title="Bullish Cross", style= plot.style_cross, linewidth=2, color=c_bullish, offset=-1) //plot(position == 1 and isBullishTriggerWave ? low -5 : na, title="Bullish Trigger Cross", style=plot.style_circles, linewidth=3, color=c_bullish, offset=-1) //plot(position == -1 and isBullishTriggerWave ? low -5 : na, title="Bullish Trigger Cross", style=plot.style_cross, linewidth=3, color=c_bullish, offset=-1) //plotchar(bullishCross and position == 1, "Long", "▲", location.belowbar, color = c_bullish, size = size.tiny) plotchar(bullishCross and position == -1, "Long", "✖", location.belowbar, color = #ff7322, size = size.tiny, editable = false) //plotchar(isBullishTriggerWave and position == 1, "Long", "▲", location.belowbar, color=c_bullish, size = size.small) plotchar(isBullishTriggerWave and position == -1, "Long", "✖", location.belowbar, color=#ff7322, size = size.tiny, editable = false) // Shit atrMultiplier = input(2, title="ATR Multiplier") boxHeightInAtr = atrMultiplier * ta.atr(10) // Box TP 1 [lowb, midb, highb] = LAF.getTPSLBoxes(6.0) if (takeProfitBoxes == 'On') tp1box = box.new(left=bar_index + 1, top=close + midb, right=bar_index + 18, bottom=close + lowb, border_color=color.new(#3666f5, 0), border_width=2, border_style=line.style_solid, bgcolor=color.new(#3666f5, 55), text="TP/SL 1 : " + str.tostring(close), text_size=size.normal, text_color=color.new(#3666f5, 0)) bottom_tp1 = box.get_bottom(tp1box) box.delete(tp1box[1]) // Box TP 2 tp2box = box.new(left=bar_index + 1, top=close+highb, right=bar_index + 18, bottom=close+midb, border_color=color.new(#3666f5, 0), border_width=2, border_style=line.style_solid, bgcolor=color.new(#3666f5, 65), text="TP/SL 2 : " + str.tostring(close), text_size=size.normal, text_color=color.new(#3666f5, 0)) top_tp2 = box.get_top(tp2box) box.delete(tp2box[1]) // Empty Box newBox = box.new(left=bar_index + 18, top=top_tp2, right=bar_index + 200, bottom=bottom_tp1, border_color=color.new(#3666f5, 0), border_width=2, border_style=line.style_solid, bgcolor=color.new(#3666f5, 50), text=" ", text_size=size.normal, text_color=color.new(#3666f5, 0)) box.delete(newBox[1]) // SL Box slBox = box.new(left=bar_index + 3, top=close-lowb, right=bar_index + 18, bottom=close-midb, border_color=color.new(color.red, 0), border_width=2, border_style=line.style_solid, bgcolor=color.new(color.red, 66), text="TP/SL 2 : " + str.tostring(close), text_size=size.normal, text_color=color.new(color.red, 0)) bottom_sl = box.get_top(slBox) box.delete(slBox[1]) // SL2 Box sl2Box = box.new(left=bar_index + 3, top=close-midb, right=bar_index + 18, bottom=close-highb, border_color=color.new(color.red, 0), border_width=2, border_style=line.style_solid, bgcolor=color.new(color.red, 65), text="TP/SL 1 : " + str.tostring(close), text_size=size.normal, text_color=color.new(color.red, 0)) bottom_sl2 = box.get_bottom(sl2Box) box.delete(sl2Box[1]) // Empty Box SL Slboxem = box.new(left=bar_index + 18, top=bottom_sl, right=bar_index + 200, bottom=bottom_sl2, border_color=color.new(color.red, 0), border_width=2, border_style=line.style_solid, bgcolor=color.new(color.red, 50), text=" ", text_size=size.normal, text_color=color.new(color.red, 0)) box.delete(Slboxem[1]) // // Line tp Bottom var line tpb = na isLastBar = barstate.islast if (isLastBar) tpb := line.new(na, bottom_tp1, na, bottom_tp1, color=color.new(#3666f5, 0), width=2, style=line.style_dashed) line.set_xy1(tpb, bar_index[50], bottom_tp1) line.set_xy2(tpb, bar_index + 200, bottom_tp1) line.delete(tpb[1]) // Line tp top var line tp2Line = na if (isLastBar) tp2Line := line.new(na, top_tp2, na, top_tp2, color=color.new(#3666f5, 0), width=2, style=line.style_dashed) line.set_xy1(tp2Line, bar_index[50], top_tp2) line.set_xy2(tp2Line, bar_index + 200, top_tp2) line.delete(tp2Line[1]) // Line SL var line slLine = na if (isLastBar) slLine := line.new(na, bottom_sl, na, bottom_sl, color=color.new(color.red, 0), width=2, style=line.style_dashed) line.set_xy1(slLine, bar_index[50], bottom_sl) line.set_xy2(slLine, bar_index + 400, bottom_sl) line.delete(slLine[1]) // Line SL2 var line sl2Line = na if (isLastBar) sl2Line := line.new(na, bottom_sl2, na, bottom_sl2, color=color.new(color.red, 0), width=2, style=line.style_dashed) line.set_xy1(sl2Line, bar_index[50], bottom_sl2) line.set_xy2(sl2Line, bar_index + 200, bottom_sl2) line.delete(sl2Line[1])
Leave a Comment