Untitled

 avatar
unknown
plain_text
a year ago
1.9 kB
5
Indexable
% Zdefiniowanie zbiorów rozmytych A i B
A = [0.3, 1; 0.7, 2; 0.5, 3; 0.8, 4];
B = [0.5, -2; 0.4, -1; 1.0, 0; 0.7, 2; 0.6, 3];

% Zdefiniowanie odwzorowań f
f1 = @(x) 2 * x + 1;
f2 = @(x) (x - 2).^2 + 5;
f3 = @(x, y) x .* y;
f4 = @(x, y) (x - 3) .* y.^2;
f5 = @(x, y) (x - 3).^2 .* y.^2;

% Inicjalizacja subplot
figure;

% Obliczenie odwzorowań i wyświetlenie wyników
for i = 1:5
    subplot(2, 3, i);
    switch i
        case 1
            C = [];
            for j = 1:size(A, 1)
                for k = 1:size(B, 1)
                    C = [C; f1(A(j, 1)), f1(B(k, 1)), min(A(j, 2), B(k, 2))];
                end
            end
            title('f(x) = 2x + 1');
        case 2
            C = [];
            for j = 1:size(A, 1)
                for k = 1:size(B, 1)
                    C = [C; f2(A(j, 1)), f2(B(k, 1)), min(A(j, 2), B(k, 2))];
                end
            end
            title('f(x) = (x - 2)^2 + 5');
        case 3
            C = [];
            for j = 1:size(A, 1)
                for k = 1:size(B, 1)
                    C = [C; f3(A(j, 1), B(k, 1)), min(A(j, 2), B(k, 2))];
                end
            end
            title('f(x, y) = xy');
        case 4
            C = [];
            for j = 1:size(A, 1)
                for k = 1:size(B, 1)
                    C = [C; f4(A(j, 1), B(k, 1)), min(A(j, 2), B(k, 2))];
                end
            end
            title('f(x, y) = (x - 3)y^2');
        case 5
            C = [];
            for j = 1:size(A, 1)
                for k = 1:size(B, 1)
                    C = [C; f5(A(j, 1), B(k, 1)), min(A(j, 2), B(k, 2))];
                end
            end
            title('f(x, y) = (x - 3)^2 * y^2');
    end
    
    scatter(C(:, 1), C(:, 2), [], C(:, 3), 'filled');
    xlabel('f(A)');
    ylabel('f(B)');
    colorbar;
    colormap(jet);
    grid on;
end
Editor is loading...
Leave a Comment