Untitled
unknown
python
a year ago
2.7 kB
7
Indexable
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM
import numpy as np
class AIHelper:
def __init__(self):
self._initialize_memory_model()
self._initialize_decision_model()
def _initialize_memory_model(self):
self.memory_model = Sequential([
LSTM(50, input_shape=(10, 1), return_sequences=False),
Dense(20, activation='relu')
])
self.memory_model.compile(optimizer='adam', loss='mse')
def _initialize_decision_model(self):
self.decision_model = Sequential([
Dense(64, input_dim=20, activation='relu'),
Dense(32, activation='relu'),
Dense(2, activation='softmax')
])
self.decision_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
def train_memory_model(self, input_data, target_data, epochs=10):
input_data_reshaped = input_data.reshape((input_data.shape[0], input_data.shape[1], 1))
self.memory_model.fit(input_data_reshaped, target_data, epochs=epochs)
def train_decision_model(self, input_data, target_data, epochs=10):
self.decision_model.fit(input_data, target_data, epochs=epochs)
def remember(self, input_data):
input_data_reshaped = input_data.reshape((input_data.shape[0], input_data.shape[1], 1))
return self.memory_model.predict(input_data_reshaped)
def decide(self, memory_output):
return self.decision_model.predict(memory_output)
def assist(self, new_input):
memory_output = self.remember(new_input)
decision_output = self.decide(memory_output)
return decision_output
# Example usage
if __name__ == "__main__":
np.random.seed(42)
tf.random.set_seed(42)
ai_helper = AIHelper()
# Simulated sensory input data
input_data = np.random.random((1000, 10))
target_memory_data = np.random.random((1000, 20))
# Train memory model
ai_helper.train_memory_model(input_data, target_memory_data, epochs=10)
# Simulated decision labels
decision_labels = np.random.randint(2, size=(1000, 1))
decision_labels = tf.keras.utils.to_categorical(decision_labels, 2)
# Generate pseudo-memory outputs
memory_outputs = ai_helper.remember(input_data)
# Train decision-making model
ai_helper.train_decision_model(memory_outputs, decision_labels, epochs=10)
# Simulated new sensory input for testing
new_input = np.random.random((1, 10))
# AI helper assisting with new input
decision_output = ai_helper.assist(new_input)
print("AI Helper decision output:", decision_output)Editor is loading...