Untitled
unknown
java
a year ago
4.7 kB
11
Indexable
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Encoder;
import org.apache.spark.sql.Encoders;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.functions;
import java.util.ArrayList;
import java.util.List;
public class SparkDatasetConverter {
public static void main(String[] args) {
SparkSession spark = SparkSession.builder()
.appName("SparkDatasetConverter")
.getOrCreate();
// Create a sample dataset of ThirdClass instances
Dataset<ThirdClass> thirdClassDataset = spark.createDataset(
List.of(
new ThirdClass("stringAttribute1", 1, "var11", "var21", "var31"),
new ThirdClass("stringAttribute1", 1, "var12", "var22", "var32")
),
Encoders.bean(ThirdClass.class)
);
// Convert the ThirdClass dataset to a RandomClass dataset
Dataset<RandomClass> randomClassDataset = convertToRandomClass(thirdClassDataset);
// Print the resulting RandomClass dataset
randomClassDataset.show();
}
private static Dataset<RandomClass> convertToRandomClass(Dataset<ThirdClass> thirdClassDataset) {
return thirdClassDataset
.groupByKey(
functions.struct("stringAttribute", "intAttribute"),
Encoders.product(Encoders.STRING(), Encoders.INT())
)
.flatMapGroups(
(key, iterator) -> {
List<RandomClass> randomClassList = new ArrayList<>();
List<AnotherClass> anotherClassList = new ArrayList<>();
String stringAttribute = key.getString(0);
Integer intAttribute = key.getInt(1);
iterator.forEachRemaining(thirdClass -> {
anotherClassList.add(new AnotherClass(thirdClass.getVar1(), thirdClass.getVar2(), thirdClass.getVar3()));
});
randomClassList.add(new RandomClass(stringAttribute, intAttribute, anotherClassList));
return randomClassList.iterator();
},
Encoders.bean(RandomClass.class)
);
}
public static class RandomClass {
private String stringAttribute;
private Integer intAttribute;
private List<AnotherClass> listAttribute;
public RandomClass(String stringAttribute, Integer intAttribute, List<AnotherClass> listAttribute) {
this.stringAttribute = stringAttribute;
this.intAttribute = intAttribute;
this.listAttribute = listAttribute;
}
// Getters and setters omitted for brevity
}
public static class AnotherClass {
private String var1;
private String var2;
private String var3;
public AnotherClass(String var1, String var2, String var3) {
this.var1 = var1;
this.var2 = var2;
this.var3 = var3;
}
// Getters and setters omitted for brevity
}
public static class ThirdClass {
private String stringAttribute;
private Integer intAttribute;
private String var1;
private String var2;
private String var3;
public ThirdClass(String stringAttribute, Integer intAttribute, String var1, String var2, String var3) {
this.stringAttribute = stringAttribute;
this.intAttribute = intAttribute;
this.var1 = var1;
this.var2 = var2;
this.var3 = var3;
}
// Getters and setters omitted for brevity
}
}
/**
The main steps are:
1. Create a sample Spark Dataset of `ThirdClass` instances.
2. Call the `convertToRandomClass` method, which performs the following:
- Group the `ThirdClass` Dataset by `stringAttribute` and `intAttribute` using `groupByKey`.
- For each group, flatten the `ThirdClass` instances into a single `RandomClass` instance by creating a list of `AnotherClass` objects.
- Return the resulting `RandomClass` Dataset.
3. Print the resulting `RandomClass` Dataset.
The key points are:
- Use `groupByKey` to group the `ThirdClass` Dataset by the `stringAttribute` and `intAttribute` columns.
- In the `flatMapGroups` function, iterate through the grouped `ThirdClass` instances, create `AnotherClass` objects, and add them to the `listAttribute` of the `RandomClass` instance.
- Return the `RandomClass` Dataset using the appropriate `Encoder`.
Let me know if you have any questions! **/Editor is loading...
Leave a Comment