Untitled
unknown
plain_text
2 years ago
14 kB
8
Indexable
class BankAccount(): def __init__(self,name,acc_no,pin,mobile_no,balance): self.name=name self.acc_no=acc_no self.pin = pin self.mobile_no = mobile_no self.balance = balance class BankingSysytem(): def __init__(self): self.details={} def insert_account(self,name,acc_no,pin,mobile_no,balance): if acc_no in self.details: print("account already exits") else: account=BankAccount(name,acc_no,pin,mobile_no,balance) self.details[acc_no]=account print("account created successfully") def deposit(self,acc_no): if acc_no in self.details: amount=float(input("enter amount:")) if amount<0: print("invalid amount ") else: self.details[acc_no].balance+=amount print("balance:",self.details[acc_no].balance) print("amount deposited successfully!!") else: print("invalid account number") def withdraw(self,acc_no): if acc_no in self.details: amount=float(input("enter the amount:")) if amount>self.details[acc_no].balance: print("insufficient balance") elif amount<0: print("invalid amount") else: self.details[acc_no].balance-=amount print("balance:",self.details[acc_no].balance) print("amount withdrawn successfully") def authentication(self,acc_no,pin): if acc_no in self.details: if pin ==self.details[acc_no].pin: print("authentication done") else: print("incorrect pin") else: print("invalid account number") def display(self,acc_no): if acc_no in self.details: account=self.details[acc_no] print(f"name:{account.name}") print(f"account number:{account.acc_no}") print(f"mobile number:{account.mobile_no}") print(f"balance:{account.balance}") else: print("invalid account number ") if __name__=='__main__': bank=BankingSysytem() while True: print("WELCOME!") print("1. Create account") print("2. Authenticate") print("3. Deposit") print("4. Withdraw") print("5. Display account details") print("6. Exit") ch = int(input("Enter your choice: ")) if ch== 1: name=str(input("enter your name:")) acc_no=int(input("enter your acc number:")) mobile_no=input("enter your number: ") pin=input("enter your pin:") balance=float(input("enter your balance :")) bank.insert_account(name,acc_no,pin,mobile_no,balance) elif ch==2: acc_no=int(input("enter your acc number:")) pin=int(input("enter the pin :")) bank.authentication(acc_no,pin) elif ch==3: acc_no=int(input("enter your acc number:")) bank.deposit(acc_no) elif ch==4: acc_no=int(input("enter your acc number:")) bank.withdraw(acc_no) elif ch==5: acc_no=int(input("enter your acc number:")) bank.display(acc_no) elif ch==6: acc_no=int(input("enter your acc number:")) print("exited..") break else: print("invalid option") ----------------------------------------- class Book(): def __init__(self,title,author,isbn,available_copies,total_copies): self.title=title self.author=author self.isbn=isbn self.available_copies=available_copies self.total_copies=total_copies def display1(self): print("\ntitle:",self.title) print("author:",self.author) print("ISBN code:",self.isbn) print("available copies of the book :",self.available_copies) print("total no.of copies of the book:", self.total_copies) def checkout(self): self.available_copies -=1 print("the available copies of the book is",self.available_copies) def return_book(self): self.available_copies +=1 print("the available copies of the book is",self.available_copies) class Library(object): books = [] Author = [] Title=[] def __init__(self, sub, author, isbn,title): self.sub = sub self.author = author self.isbn = isbn self.title = title def add_book(self): Library.books.append((self.sub,self.author,self.isbn,self.title)) def search_isbn(self,isbn): for book in Library.books: if book[2]==isbn: return book def search_author(self,author): for book in Library.books: if book[1]==author: Library.Author.append(book) return Library.Author class User: def __init__(self, name, lib_no): self.name = name self.lib_no = lib_no self.checked_out_books = [] def checkout_book(self, book_title): if book_title not in self.checked_out_books: self.checked_out_books.append(book_title) print(f"{self.name} has checked out '{book_title}'") else: print(f"{self.name} already has '{book_title}' checked out.") def return_book(self, book_title): if book_title in self.checked_out_books: self.checked_out_books.remove(book_title) print(f"{self.name} has returned '{book_title}'") else: print(f"{self.name} didnt return the book '{book_title}'.") book_1=Book("c programming","local author",'12345678',31,11) book_1.checkout() book_1.display1() print("\n") book = Library("python", 'foreign author', '12345', 22) book.add_book() book = Library('Maths', 'saravanan', '1111111', 5) book.add_book() book = Library('java', 'local author', '0000000', 11) book.add_book() print (book.search_isbn('12345')) print (book.search_author('saravanan')) print("\n") user1 = User("nathish", "103") user1.checkout_book("python") user1.checkout_book("java") user1.return_book("c programming") -------------------------------------------------------------------------------------------------- import numpy as np from matplotlib import pyplot as plt import matplotlib.pyplot as plt from PIL import Image, ImageOps print("DISPLAY IMAGE") im = Image.open("c:/dog/image.jpg") plt.imshow(im) plt.show() print("PIXEL VALUES") img = np.array(im) print(img) print("DIMENSION") print('# of dims: ',img.ndim) print('img shape: ',img.shape) print('dtype: ',img.dtype) print(type(img)) print("PIXEL VALUE AT [R, G, B]") print(img[20, 20]) img_R = img[:, :, 0] # Index 0 for the Red channel img_G = img[:, :, 1] # Index 1 for the Green channel img_B = img[:, :, 2] # Index 2 for the Blue channel plt.imshow(img_B) plt.title('Red Channel') plt.axis('off') plt.show() img_R, img_G, img_B = img.copy(), img.copy(), img.copy() img_R[:, :, (1, 2)] = 0 img_G[:, :, (0, 2)] = 0 img_B[:, :, (0, 1)] = 0 img_rgb = np.concatenate((img_R,img_G,img_B),axis=1) plt.figure(figsize=(15, 15)) plt.axis('off') plt.imshow(img_rgb) plt.show() img_0 = (img // 64) * 64 img_1 = (img // 128) * 128 img_all = np.concatenate((img, img_0, img_1), axis=1) plt.figure(figsize=(15, 15)) plt.imshow(img_all) plt.show() fig = plt.figure(figsize=(10, 10)) ax1 = fig.add_subplot(1, 2, 1) ax1.imshow(img) ax1.set_title('Original') top_margin = 20 bottom_margin = 30 left_margin = 10 right_margin = 15 img0 = img[top_margin:-bottom_margin, left_margin:-right_margin, :] if img0.shape[0] > 0 and img0.shape[1] > 0: # Display the trimmed image ax2 = fig.add_subplot(1, 2, 2) ax2.imshow(img0) ax2.set_title('Trimmed') plt.show() else: print("Trimmed image has zero dimensions.") plt.imshow(img0) plt.title("rotated") plt.imshow(np.rot90(im)) img = 255 - img fig = plt.figure(figsize=(10, 10)) plt.imshow(img) plt.title('Negative of RGB image') plt.show() img0 = np.array(Image.open('c:/dog/image.jpg').resize(img.shape[1::-1])) print(img.dtype) dst = (img * 0.6 + img0 * 0.4).astype(np.uint8) # Blending them in plt.figure(figsize=(10, 10)) plt.imshow(dst) plt.show() ----------------------------------------------------------------- import pandas as pd import numpy as np import xml.etree.ElementTree as et score = {'Rohit Sharma': [120,135,115,140], 'Virat Kohli': [180,170,140,150], 'Dhoni': [143,136,129,152], 'Shubman Gil': [90,100,138,128], 'K L Rahul': [153,142,131,164]} df = pd.DataFrame(score, index=['Test1', 'Test2', 'Test3', 'Test4']) print("DATAFRAME:\n") print(df) a=df.to_html() print("HTML CODE:\n") print(a) print("MODIFIED DATA:\n") df.style.set_properties(**{'background-color': 'yellow', 'color': 'red'}) ----------------------------------------------------------------------------------- import pandas as pd a={"Name":['Michael','Uma','Alice','Priya'],"Year":[2,3,1,4],"Section":['A','B','A','C'],"Gender":['M','F','M','F'],"Cutoff":[189.9,175.4,190.1,182.5]} df=pd.DataFrame(a) print(“DATAFRAME”) print(df) x=df.to_xml("c:/app/students.xml") import xml.etree.ElementTree as et xtree = et.parse("c:/app/students.xml") xroot = xtree.getroot() df_cols = ["Name", "Year", "Section", "Gender","Cutoff"] rows = [] for node in xroot: s_name = node.find("Name").text s_year = node.find("Year").text s_section = node.find("Section").text s_gender = node.find("Gender").text s_cutoff = node.find("Cutoff").text rows.append({"Name": s_name, "Year": s_year, "Section": s_section, "Gender": s_gender,"Cutoff": s_cutoff}) out_df = pd.DataFrame(rows, columns = df_cols) print(“AFTER READING FROM XML”) print(out_df) --------------------------------------------------- import pandas as pd import matplotlib.pyplot as plt data = {'year': [2017, 2018, 2019, 2020], 'maxtemp': [32, 33, 35, 34], 'mintemp': [20, 22, 21, 23], 'rainfall': [123, 140, 135, 160]} df = pd.DataFrame(data) print(df) ax = df.plot(kind='bar', x='year', y=['maxtemp', 'mintemp', 'rainfall'], title='Temperature', legend=True, fontsize=12) ax.set_xlabel('Year', fontsize=12) ax.set_ylabel('Temperature', fontsize=12) x_labels = ['2017', '2018', '2019', '2020'] plt.show() ---------------------------------------------------------------------------- import pandas as pd import matplotlib.pyplot as plt df = pd.read_excel("C://Users//madha//Downloads//ABC_Sales.xlsx") print(df) ax= df.loc[:, 'facecream':'moisturizer'].plot(kind='line', title='salesdata', figsize=(15, 10), legend=True, fontsize=12) ax.set_xlabel('month', fontsize=12) ax.set_ylabel('sales', fontsize=12) plt.show() ax = df.plot(kind='scatter', x='total_units', y='total_profit', title='Sales Data', legend=True, fontsize=12) ax.set_xlabel('totalunits', fontsize=12) ax.set_ylabel('totalprofit', fontsize=12) plt.show() ----------------------------------------------------------------------------------- import numpy as np import pandas as pd df = pd.read_csv('Dummy_Sales_Data_v1.csv') df1 = pd.read_csv('Dummy_Sales_Data_v1.csv') df # Display the first 7 rows first_7_rows = df.head(7) print("First 7 rows:") first_7_rows# # Display the last 5 rows last_5_rows = df.tail(5) print("\nLast 5 rows:") last_5_rows # Display the row randomly. random_rows = df1.sample(frac=1) print("Randomly shuffled rows:") random_rows # Display information about the DataFrame print("DataFrame Information:") df.info() # Display the descriptive statistics about the data. data_statistics = df.describe() print("Descriptive Statistics:") print(data_statistics) # Select a Subset of the Dataset subset = df.iloc[2:6, 1:3] subset # Display the group of rows and columns identified by their labels/names and uses row and column numbers data = df1.loc[[0,1,2], ['OrderID',"Quantity",'UnitPrice(USD)']] data # Display unique values and number of unique records. for column in df.columns: unique_values = df[column].unique() num_unique = df[column].nunique() print(f"Unique Values in {column}:", unique_values) print(f"Number of Unique Records in {column}:", num_unique) # Display the rows and columns which have null values. And display the missing feature (Example: Product category). Also replace the missing values. null_values = df1[df.isnull().any(axis=1)] print("Rows with Null Values:") null_values null_columns = df.columns[df.isnull().any()] print("\nColumns with Null Values:") print(null_columns) missing_features = df.columns[df.isnull().any()].tolist() print("\nMissing Features:") print(missing_features) data2= df.fillna(0) data2 # Sort the DataFrame in Ascending and descending order. ascending_df = df.sort_values(by='UnitPrice(USD)') print("\nDataFrame sorted in Ascending Order:") ascending_df descending_df = df.sort_values(by='UnitPrice(USD)', ascending=False) print("\nDataFrame sorted in Descending Order:") descending_df # Display the relationship among all the columns. data1 = {'OrderID':pd.Series(df1['OrderID']).tolist(), 'Quantity':pd.Series(df1['Quantity']).tolist(), 'UnitPrice(USD)':pd.Series(df1['UnitPrice(USD)']).tolist(), 'Shipping_Cost(USD)':pd.Series(df1['Shipping_Cost(USD)']).tolist(), 'Delivery_Time(Days)': pd.Series(df1['Delivery_Time(Days)']).tolist(), 'OrderCode': pd.Series(df1['OrderCode']).tolist()} df2 = pd.DataFrame(data1) corr1= df2.corr() corr1 ----------------------------------------- import random import datetime def generate_token(): return random.randint(1000,9999) def perform_transaction(acc_no,trans_type,amount): token=generate_token() timestamp=datetime.datetime.now() print(f"token number:{token}") print(f"account number:{acc_no}") print(f"transaction type:{trans_type}") print(f"amount:{amount}") print(f"date and time:{timestamp}") acc_no="12345" trans_type="withdrawl" amount="500" perform_transaction(acc_no,trans_type,amount)
Editor is loading...
Leave a Comment