Untitled
unknown
plain_text
2 years ago
14 kB
13
Indexable
Draw a circle with centre (1, 3) MATLAB Code: clc clear all; close all; t = linspace(0, 2*pi, 101); x = 1 +2*cos(t); y = 3 +2*sin(t); plot(x,y,'r.') axis equal xlabel('x-axis') ylabel('y-axis') title('Circle') Example 2: Draw the graph by using without hold on function MATLAB Code: y = linspace(-10,10,1000) plot(y,cos(y),'b.',y,cos(2*y),'g.') xlabel('x axis') ylabel('y axis') legend('cos(x)','cos(2x)','location','northeast') Example 3: Draw the surface by using plot3 MATLAB Code: t=linspace(0,2*pi,500); x=cos(t); y=sin(t); z=sin(5*t); comet3(x,y,z) plot3(x,y,z,'g*','markersize',7) xlabel('x-axis') ylabel('y-axis') zlabel('z-axis') title('3D Curve') Example 4: Draw the four curves sinx, cosx, e-x , sin3x in one window MATLAB Code: clc clear all x=0:.1:2*pi; subplot(2,2,1); plot(x,sin(x),'b*'); title('sin(x)') subplot(2,2,2); plot(x,cos(x),'r-o'); title('cos(x)') subplot(2,2,3) plot(x,exp(-x),'g.'); title('exp(-x)') subplot(2,2,4); plot(x,sin(3*x),'m-o'); title('sin(3x)') Example 5: Draw the surface by using ezsurf and ezplot MATLAB Code: syms x y f = 2*(x^2+y^2) colormapcool Example 6: Draw the ezplot for the function x^2+2*x-6 MATLAB Code: syms x y = x^2+2*x-6 ezplot(y) Example 7: MATLAB Code: x=-1:.05:1; y=-1:.05:1; [x,y]=meshgrid(x,y); z=x.*y.^2-x.^3 surf(x,y,z); colormap spring shading interp Example 8: Find ( ) ( ) ( ) MATLAB Code: syms x f= x^2+cos(2*x)+4*sin(x)+exp(x) diff(f,x) % differentiate f w.r.to x diff(f,x,2) Example 9: ∫ () MATLAB Code: syms x f= 3*x-x^2; int(f,x,0,3) Week 2:- Plotting of Curves and Surfaces Example 1: To Plot the Circle Matlab Code clc clear all syms r a b r= input(‘Enter the radius of the circle’) a= input(‘Enter the x coordinate of the center’) b= input(‘Enter the y coordinates of the center’) t = linspace(0, 2*pi, 100); x = a+r*cos(t); y = b+r*sin(t); axis equal plot(x, y) xlabel(‘x-Coordinate’) ylabel(‘x-Coordinate’) title(‘(x − a) 2 + (y − b) 2 = r 2 Example 2: Multiple plots using Hold on Matlab Code Matlab code Clc clear all x = linspace(0, 1, 100); plot(x, x.2 ,‘r’, ‘LineWidth’,2.0) hold on plot(x, cos(x), ‘g’, ‘LineWidth’,2.0) hold on plot(x, sin(x),‘b’, ‘LineWidth’,2.0) hold on plot(x, exp(x),‘c’, ‘LineWidth’,2.0) legend(‘x 2 ’, ‘cos(x)’ , ‘sin(x)’ , ‘ex ’) Example 3: Multiple plots without command “hold on” Matlab Code Matlab code clc clear all x = linspace(0, 1, 200); plot( x, sin(x), x, cos(x), x, x.3 , x, tan(x), ’LineWidth’,2.0) legend(‘sin(x)’,‘cos(x)’,‘x3 ’,‘tan(x)’) Example 4: Multiple plots using “subplot ” Matlab code clc clear all x=0:0.1:2*pi; subplot(2,2,1) plot(x,sin(x)); title(‘sin(x)’) subplot(2,2,2) plot(x,cos(x),’r-*’); title(’cos(x)’) subplot(2,2,3) plot(x,exp(−x),’go’); title(’e-x ’) subplot(2,2,4); plot(x,sin(3 ∗ x),’ms’) title(‘sin(3x)’) Example 5: Graph of the curve using “ezplot ” Matlab code clc clear all syms x f=sin(2*x)+cos(3*x) figure(1) ezplot(f) figure(2) ezplot(f,[0,3]) Example 6: Graph of a curve and its tangent line in the neighbourhood D of a point. Matlab code Clc clear all syms x y=input(’enter the function f in terms of x:’) x1 = input(’Enter x value at which tangent : ’); D=[x1-2 x1+2] ezplot(y,D) hold on yd = diff(y,x); slope = subs(yd,x,x1); y1 = subs(y,x,x1); plot(x1,y1,’ko’) Tgtline = slope*(x-x1)+y1 Week 3: Function and its derivatives Example 1: To Plot the function and its derivatives Matlab code clc clear all syms x real f= input(‘Enter the function f(x):’); fx= diff(f,x) fxx= diff(fx,x) D = [0, 5]; l=ezplot(f,D) set(l,‘color’,‘b’); hold on h=ezplot(fx,D); s et(h,‘color’,‘r’); e=ezplot(fxx,D); set(e,‘color’,‘g’); legend(‘f’,‘ fx,‘fxx’) legend(‘Location’,‘northeastoutside’) Example 2: To find the maxima and minima of the single variable function and visualize it Matlab code clc clear all syms x real f= input(‘Enter the function f(x):’); fx= diff(f,x); fxx= diff(fx,x); c = solve(fx) c=double(c); for i = 1:length(c) T1 = subs(fxx, x ,c(i) ); T1=double(T1); T3= subs(f, x, c(i)); T3=double(T3); if (T1==0) sprintf(‘The inflection point is x = %d’,c(i)) else if (T1 < 0) sprintf(‘The maximum point x is %d’, c(i)) sprintf(‘The maximum value of the function is %d’, T3) else sprintf(‘The minimum point x is %d’, c(i)) sprintf(‘The minimum value of the function is %d’, T3) end end cmin = min(c); cmax = max(c); D = [cmin-2, cmax+2]; ezplot(f,D) hold on plot(c(i), T3, ‘g*’, ‘markersize’, 15); end Example 4: To find the area of the regions enclosed by curves and visualize it. Matlab code clc clear syms x y1=input(‘ENTER the upper curve as a function of x : ’); y2=input(‘ENTER the lower curve as a function of x : ’); t=solve(y1-y2); t=double(t); A=int(y1-y2,t(1),t(2)) D=[t(1)-0.2 t(2)+0.2]; ez1=ezplot(y1,D); set(ez1,‘color’,‘r’) hold on ez2=ezplot(y2,D); set(ez2,‘color’,‘g’) xv = linspace(t(1),t(2)); y1v =subs(y1,x,xv); y2v = subs(y2,x,xv); x = [xv,xv]; y = [y1v,y2v]; fill(x,y,‘b’) Week 4:- Volume of the solid of revolution Example 1: Find the volume of the solid generated by revolving the region bounded by y = √ x, 0 ≤ x ≤ 4 about the line y = 1. Matlab code clc clearvars syms x; f = input('Enter the function: '); fL = input('Enter the interval on which the function is defined: '); yr = input('Enter the axis of rotation y = c (enter only c value): '); iL = input('Enter the integration limits: '); Volume = pi*int((f-yr)^2,iL(1),iL(2)); disp(['Volume is: ', num2str(double(Volume))]) fx = inline(vectorize(f)); xvals = linspace(fL(1),fL(2),201); xvalsr = fliplr(xvals); xivals = linspace(iL(1),iL(2),201); xivalsr = fliplr(xivals); xlim = [fL(1) fL(2)+0.5]; ylim = fx(xlim); figure('Position',[100 200 560 420]) subplot(2,1,1) hold on; plot(xvals,fx(xvals),'-b','LineWidth',2); fill([xvals xvalsr],[fx(xvals) ones(size(xvalsr))*yr],[0.8 0.8 0.8],'FaceAlpha',0.8) plot([fL(1) fL(2)],[yr yr],'-r','LineWidth',2); legend('Function Plot','Filled Region','Axis of Rotation','Location','Best'); title('Function y=f(x) and Region'); set(gca,'XLim',xlim) xlabel('x−axis'); ylabel('y−axis'); subplot(2,1,2) hold on; plot(xivals,fx(xivals),'-b','LineWidth',2); fill([xivals xivalsr],[fx(xivals) ones(size(xivalsr))*yr],[0.8 0.8 0.8],'FaceAlpha',0.8) fill([xivals xivalsr],[ones(size(xivals))*yr -fx(xivalsr)+2*yr],[1 0.8 0.8],'FaceAlpha',0.8) plot(xivals,-fx(xivals)+2*yr,'-m','LineWidth',2); plot([iL(1) iL(2)],[yr yr],'-r','LineWidth',2); title('Rotated Region in xy−Plane'); set(gca,'XLim',xlim) xlabel('x-axis'); ylabel('y-axis'); [X,Y,Z] = cylinder(fx(xivals)-yr,100); figure('Position',[700 200 560 420]) Z = iL(1) + Z.*(iL(2)-iL(1)); surf(Z,Y+yr,X,'EdgeColor','none','FaceColor','flat','FaceAlpha',0.6); hold on; plot([iL(1) iL(2)],[yr yr],'-r','LineWidth',2); xlabel('X-axis'); ylabel('Y-axis'); zlabel('Z-axis'); view(22,11); Week 5:- Evaluating maxima and minima of functions of two variables Example 1: Obtain the maximum and minimum values of f(x,y) = 2(x2 -y 2 )- x 4 +y4 Matlab code clc; clear all; close all; syms x y f(x,y) = input('Enter the function f(x,y):'); p = diff(f,x); q = diff(f,y); [ax,ay] = solve(p,q); ax=double(ax);ay=double(ay); r = diff(p,x); s = diff(p,y); t = diff(q,y); D = r*t-s^2; figure fsurf(f); legstr = {'Function plot'}; for i=1:size(ax) T1 = D(ax(i),ay(i)); T2 = r(ax(i),ay(i)); T3 = f(ax(i),ay(i)); if (double(T1)==0) sprintf('At (%f,%f) further investigation is required',ax(i),ay(i)) legstr = [lrgstr,{'case of futher investigtation'}]; mkr = 'bv'; %marker elseif (double(T1)<0) sprintf('The point(%f,%f) is a saddle point',ax(i),ay(i)) legstr = [legstr,{'The case of further investigation'}]; mkr = 'ko'; else if (double(T2)<0) sprintf('The maximum value of the function is f(%f,%f) = %f', ax(i),ay(i),T3) legstr = [legstr,{'Maximum value of the function'}]; %updating legend' mkr = 'g+'; else sprintf('The minimum value of the function is f(%f,%f) = %f', ax(i),ay(i),T3) legstr = [legstr,{'Minimum value of the function'}]; %updating legend' mkr = 'r*'; end end hold on plot3(ax(i),ay(i),T3,mkr,'LineWidth',4); end legend(legstr,'Location','Best'); Week 6:- Constrained Optimization using the method of Lagrange’s Multipliers Example 1: Find the minimum of f(x, y) = x 2 + y 2 subject to the constraint x + y = 10 Matlab code clc clearvars syms x y L f = input('Enter the function f(x,y): '); g = input('Enter the constraint function g(x,y): '); F = f + L*g; gradF = jacobian(F,[x,y]); [L,x1,y1] = solve(g,gradF(1),gradF(2),'Real',true); x1 = double(x1); y1 = double(y1); xmx = max(x1); xmn = min(x1); ymx = max(y1); ymn = min(y1); range = [xmn-3 xmx+3 ymn-3 ymx+3]; ezmesh(f,range);hold on; grid on; h = ezplot(g,range); set(h,'LineWidth',2); tmp = get(h,'contourMatrix'); xdt = tmp(1,2:end); ydt = tmp(2,2:end); zdt = double(subs(f,{x,y},{xdt,ydt})); plot3(xdt,ydt,zdt,'r','LineWidth',2);axis(range); for i = 1:numel(x1) G(i) = subs(f,[x,y],[x1(i),y1(i)]) plot3(x1(i),y1(i),G(i),'*k','MarkerSize',20); end title('Constrained Maxima/Minima') Example 2: Find the maximum and minimum distances from the origin to the curve 3x 2+4xy+6y 2−140. Matlab code clc clearvars syms x y z L f = input('Enter the function f(x,y,z): '); g = input('Enter the constraint function g(x,y,z): '); F = f + L*g; gradF = jacobian(F,[x,y,z]); [L,x1,y1,z1] = solve(g,gradF(1),gradF(2),gradF(3)); Z = [x1 y1 z1]; disp('[x y z]=') disp(Z) Week 7:- Evaluating Volume Under surfaces Example 1: To find ∫ ∫ dydx Matlab code clc clear all close all syms x y z int(int((x+y)/4,y,x/2,x),x,1,2) viewSolid(z,0+0*x+0*y,(x+y)/4,y,x/2,x,x,1,2) Example 2 To find the volume of the prism whose base is the triangle in the xy plane bounded by the x-axis and the lines y = x and x = 1 and whose top lies in the plane z = f(x,y) = 3-x-y. The limits of integration here are y = 0 to 1 while x = y to 1 Matlab code clc clear all close all syms x y z int(int(3-x-y,x,y,1),y,0,1) viewSolid(z,0+0*x+0*y,3-x-y,x,y,1,y,0,1) Example 3 Evaluate the integral ∫ ∫ ( ) by changing the order of integration. As per the given limits of integration x=0 to 2 while y = x 2 to 2x Matlab code clc clear all close all syms x y z int(int(4*x+2,y,x^2,2*x),x,0,2) viewSolid(z,0+0*x+0*y,4*x+2,y,x^2,2*x,x,0,2) Example 4: Evaluate ∬ dA where R = ,(x,y)|0≤x≤2, 1≤y≤2- Matlab code clc clear all close all syms x y z viewSolid(z,0+0*x+0*y,x-3*y^2,1+0*x,2+0*x,x,0,2) int(int(x-3*y^2,y,1,2),x,0,2) Example 5:Evaluate ∬ ( ) dA where R = *1,2+x*0,π+ Matlab code clc clear all close all syms x y z viewSolid(z,0+0*x+0*y,y*sin(x*y),x,1+0*y,2+0*y,y,0,pi) int(int(y*sin(x*y),x,1,2),y,0,pi) Example 6: Find the volume of the solid that lies under the paraboloid z = x^2+y^2 and above the region D in the xy-plane bounded by the lines y = 2x and y = x^2 Matlab code clc clear all close all syms x y z int(int(x^2+y^2,x,y/2,sqrt(y)),y,0,4) viewSolid(z,0+0*x+0*y,x^2+y^2,x,y/2,sqrt(y),y,0,4) Week 8:- Evaluating Triple Integrals Example 1: Find the volume of the region D enclosed by the surfaces z = x2 + 3y2 and z = 8 – x 2 – y 2 . Matlab code clear clc syms x y z xa = -2; xb = 2; ya = -sqrt(2-x^2/2); yb = sqrt(2-x^2/2); za = x^2+3*y^2; zb = 8-x^2-y^2; I = int(int(int(1+0*z,z,za,zb),y,ya,yb),x,xa,xb) viewSolid(z,za,zb,y,ya,yb,x,xa,xb) Example 2: Find the volume of the region cut from the cylinder x2 + y2 = 4 by the plane z = 0 and the plane x + z = 3 Matlab code clear clc syms x y z ya = -2; yb = 2; xa = -sqrt(4-y^2); xb = sqrt(4-y^2); za = 0+0*x+0*y; zb = 3-x-0*y; I = int(int(int(1+0*z,z,za,zb),x,xa,xb),y,ya,yb) viewSolid(z,za,zb,x,xa,xb,y,ya,yb Example 3: Find the volume of the region in the first octant bounded by the coordinate planes, the plane y = 1 -x, and the surface z = cos(πx/2), 0≤x≤1. Matlab code clear clc syms x y z real xa = 0; xb = 1; ya = 0+0*x; yb = 1-x; za = 0*x+0*y zb = cos(pi*x/2)+0*y; I = int(int(int(1+0*z,z,za,zb),y,ya,yb),x,xa,xb) viewSolid(z,za,zb,y,ya,yb,x,xa,xb) Week 9:- Gradient, Curl and Divergence Example 1: Find the Gradient of the function f = 2xy Matlab code clc clear all close all syms x y f = input('Enter the function f(x,y):') grad = gradient(f,[x,y]) P(x,y) = grad(1);Q(x,y)= grad(2); x = linspace(-2,2,10);y = x; [X,Y] = meshgrid(x,y); U = P(X,Y);V = Q(X,Y); quiver(X,Y,U,V,1) axis on xlabel('x');ylabel('y') hold on fcontour(f,[-2,2]) Example 2: Find the divergence of the vector field F = xy2 i + x2 j and visualise it. Maltab code clear all close all clc syms x y f = input("Enter the 2D vector function in the form [f1,f2]:"); div(x,y) = divergence(f,[x,y]) P(x,y) = f(1);Q(x,y)= f(2); x = linspace(-4,4,20);y = x; [X,Y] = meshgrid(x,y); U = P(X,Y);V = Q(X,Y); figure pcolor(X,Y,div(X,Y)) shading interp hold on; quiver(X,Y,U,V,1) axis on xlabel('x');ylabel('y') hold off; title("Vector field of F(x,y)=[f1,f2]"); Example 3: Find and visualise the curl of a vector function F = -yi + xj Matlab code clear all close all clc syms x y z f = input("Enter the 2D vector function in the form [f1,f2,f3]:"); P(x,y,z) = f(1); Q(x,y,z)= f(2); R(x,y,z)=f(3); crl = curl(f,[x,y,z]) C1(x,y,z)=crl(1); C2(x,y,z)=crl(2); C3(x,y,z)=crl(3); x = linspace(-4,4,20); y=x; z=x; [X,Y,Z] = meshgrid(x,y,z); U = P(X,Y,Z); V = Q(X,Y,Z); W = R(X,Y,Z); CR1=C1(x,y,z); CR2=C2(x,y,z); CR3=C3(x,y,z); figure; subplot(1,2,1); quiver3(X,Y,Z,U,V,W); title('3-D View of vector field'); subplot(1,2,2); quiver3(X,Y,Z,CR1,CR2,CR3); title('3-D View of CURL');
Editor is loading...