Untitled
unknown
plain_text
2 years ago
1.1 kB
4
Indexable
async def _train_model(step: Step) -> types.StepMessage: project: Project = step.project merged_dataset_artifact = await get_artifact(step, "Merged dataset") dataset_id = json.loads(merged_dataset_artifact.embed).get("id") dataset = await Dataset.objects.aget(id=int(dataset_id)) dataset_metadata = dataset.content.metadata.data_dictionary selected_fields_artifact = await get_artifact(step, "Field selection") selected_fields = json.loads(selected_fields_artifact.embed) feature_metadata_path = _create_feature_metadata_file(dataset_metadata, selected_fields, project.team) use_case_artifact = await get_artifact(step, "Use case") model_name, target = await _gen_model_target(use_case_artifact.embed, dataset) current_time = datetime.now().strftime("%Y_%m_%d_%H_%M") model = await train_model(project.team, dataset.file.path, f"{current_time}_{model_name}", target, feature_metadata_path) artifact = types.MessageEmbed(type="mlmodel", embed=str(model.pk), description="") return types.StepMessage( role="assistant", message="", embeds=[artifact], )
Editor is loading...
Leave a Comment