Untitled
unknown
plain_text
2 years ago
2.8 kB
18
Indexable
import numpy as np
class NeuralNetwork:
def __init__(self, input_size, hidden_size, output_size):
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
# Initialize weights and biases
self.W1 = np.random.randn(self.input_size, self.hidden_size)
self.b1 = np.zeros((1, self.hidden_size))
self.W2 = np.random.randn(self.hidden_size, self.output_size)
self.b2 = np.zeros((1, self.output_size))
def forward(self, X):
# Forward propagation
self.z1 = np.dot(X, self.W1) + self.b1
self.a1 = self.sigmoid(self.z1)
self.z2 = np.dot(self.a1, self.W2) + self.b2
return self.z2
def backward(self, X, y, learning_rate=0.01):
# Forward propagation
predictions = self.forward(X)
# Backpropagation
N = len(X)
K = self.output_size
for i in range(N):
delta3 = predictions[i] - y[i]
dW2 = np.outer(self.a1[i], delta3)
db2 = delta3
delta2 = np.dot(delta3, self.W2.T) * (self.a1[i] * (1 - self.a1[i]))
dW1 = np.outer(X[i], delta2)
db1 = delta2
# Update weights and biases
self.W1 -= learning_rate * dW1
self.b1 -= learning_rate * db1
self.W2 -= learning_rate * dW2
self.b2 -= learning_rate * db2
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def custom_cost_function(self, X, y):
# Compute custom cost function
predictions = self.forward(X)
N = len(X)
K = self.output_size
cost = 0.0
for i in range(N):
for k in range(K):
cost += 0.5 * (predictions[i][k] - y[i][k]) ** 2
return cost
def accuracy(self, X, y):
# Make predictions
predictions = np.argmax(self.forward(X), axis=1)
# Compare predictions with true labels
correct = np.sum(predictions == y)
# Calculate accuracy
accuracy = correct / len(y)
return accuracy
# Example usage:
# Create an instance of the NeuralNetwork class
input_size = 3
hidden_size = 4
output_size = 2
model = NeuralNetwork(input_size, hidden_size, output_size)
# Example data
X = np.random.randn(5, input_size) # 5 samples, 3 features
y = np.random.randint(0, 2, size=(5, output_size)) # 5 samples, 2 output values
# Training loop
num_epochs = 1000
learning_rate = 0.01
for epoch in range(num_epochs):
# Forward pass and backward pass
model.backward(X, y, learning_rate)
# Print the loss
if epoch % 100 == 0:
loss = model.custom_cost_function(X, y)
print(f'Epoch {epoch}, Loss: {loss}')
accuracy = model.accuracy(X, y)
print(f'Test Accuracy: {accuracy}')
Editor is loading...
Leave a Comment