Untitled

 avatar
unknown
plain_text
2 days ago
11 kB
2
Indexable
import pandas as pd
import numpy as np
from dateutil.relativedelta import relativedelta
import math

def get_price_on_date(prices_df, target_date, ticker):
    """
    Returns the last available price on or before target_date for a given ticker.
    """
    df_filtered = prices_df[prices_df['Date'] <= target_date]
    if df_filtered.empty:
        return np.nan
    return df_filtered.iloc[-1][ticker]

def compute_momentum_for_asset(prices_df, current_date, ticker, lookback_months):
    """
    Computes three momentum signals for the given asset and lookback period.
    Returns:
      - total_return (price-based momentum)
      - price_minus_sma (distance from moving average)
      - risk_adjusted (risk-adjusted momentum)
    """
    start_date = current_date - relativedelta(months=lookback_months)
    price_start = get_price_on_date(prices_df, start_date, ticker)
    price_current = get_price_on_date(prices_df, current_date, ticker)
    
    if pd.isna(price_start) or pd.isna(price_current):
        return np.nan, np.nan, np.nan
    
    # 1. Total return momentum
    total_return = (price_current / price_start) - 1
    
    # 2. Price minus moving average momentum
    prices_window = prices_df[(prices_df['Date'] >= start_date) & (prices_df['Date'] <= current_date)][ticker]
    sma = prices_window.mean() if not prices_window.empty else np.nan
    price_minus_sma = (price_current / sma) - 1 if (not pd.isna(sma) and sma != 0) else np.nan
    
    # 3. Risk-adjusted momentum
    numerator = np.log(price_current / price_start)
    prices_period = prices_df[(prices_df['Date'] >= start_date) & (prices_df['Date'] <= current_date)][ticker].sort_index()
    if len(prices_period) < 2:
        risk_adjusted = np.nan
    else:
        log_returns = np.log(prices_period / prices_period.shift(1)).dropna()
        denominator = log_returns.abs().sum()
        risk_adjusted = numerator / denominator if denominator != 0 else np.nan
    
    return total_return, price_minus_sma, risk_adjusted

def compute_asset_correlation(prices_df, current_date, ticker, universe, lookback_months=12):
    """
    Computes the correlation between asset 'ticker' and an equally weighted portfolio
    of all assets in 'universe' over the past 'lookback_months' months.
    Returns the Pearson correlation coefficient.
    """
    start_date = current_date - relativedelta(months=lookback_months)
    df_window = prices_df[(prices_df['Date'] >= start_date) & (prices_df['Date'] <= current_date)].sort_values('Date')
    if df_window.empty:
        return np.nan
    
    # Compute daily log returns for the asset
    asset_prices = df_window[ticker]
    asset_returns = np.log(asset_prices / asset_prices.shift(1)).dropna()
    
    # Compute daily log returns for each asset in the universe
    portfolio_returns = pd.DataFrame()
    for t in universe:
        t_prices = df_window[t]
        t_returns = np.log(t_prices / t_prices.shift(1))
        portfolio_returns[t] = t_returns
    # Equal-weighted portfolio returns
    portfolio_returns['EW'] = portfolio_returns.mean(axis=1)
    
    # Align the series
    combined = pd.concat([asset_returns, portfolio_returns['EW']], axis=1, join='inner')
    combined.columns = ['asset', 'portfolio']
    
    if len(combined) < 2:
        return np.nan
    corr = combined['asset'].corr(combined['portfolio'])
    return corr

def compute_aggregated_momentum(prices_df, current_date, ticker, lookback_periods, correlation_lookback=12, universe=None):
    """
    For a given ticker and current_date, compute momentum signals over each lookback period.
    Each raw momentum signal is adjusted for correlation using:
    
         φ = r / (1 + ρ)
    
    where ρ is the asset’s correlation with an equally weighted portfolio of the risk-on universe
    (computed over 'correlation_lookback' months).
    
    Returns:
       - aggregated_score: average of all adjusted momentum signals
       - is_positive: True only if every adjusted signal is positive.
       - signals: list of all adjusted signals (for inspection)
    """
    if universe is None:
        # If no universe provided, use the ticker itself (not recommended)
        universe = [ticker]
    
    # Compute correlation (ρ) using a fixed lookback period (e.g., 12 months)
    rho = compute_asset_correlation(prices_df, current_date, ticker, universe, lookback_months=correlation_lookback)
    if pd.isna(rho):
        return None, None, None
    
    signals = []
    for lb in lookback_periods:
        tr, pma, ra = compute_momentum_for_asset(prices_df, current_date, ticker, lb)
        if pd.isna(tr) or pd.isna(pma) or pd.isna(ra):
            return None, None, None  # Incomplete data; skip asset.
        # Apply correlation adjustment to each signal:
        adjusted_tr = tr / (1 + rho)
        adjusted_pma = pma / (1 + rho)
        adjusted_ra = ra / (1 + rho)
        signals.extend([adjusted_tr, adjusted_pma, adjusted_ra])
    agg_score = np.mean(signals)
    is_positive = all(x > 0 for x in signals)
    return agg_score, is_positive, signals

def backtest_momentum_strategy(prices_df, start_date, end_date, rebalance_frequency, lookback_periods, aum, top_n, risk_on_list, risk_off_list, correlation_lookback=12):
    """
    Backtests the long-only momentum strategy using the "scores approach" with correlation adjustment.
    
    The final portfolio always has exactly top_n (e.g. 6) positions.
    Selection logic (ensuring exactly 6 positions):
      - If ≥ 6 risk‑on assets have positive momentum: take top 6 positive.
      - If exactly 5 positive: add 1 risk‑off asset.
      - If exactly 4 positive: add 2 risk‑off assets.
      - If < 4 positive: take available positive risk‑on, add both risk‑off assets,
        then fill remaining slots with the top-ranked risk‑on assets (regardless of sign) until 6 positions.
    
    Parameters:
      prices_df: DataFrame with a "Date" column (datetime) and asset price columns.
      start_date: Strategy start date (string, e.g. "2024-01-01")
      end_date: Strategy end date (string)
      rebalance_frequency: Frequency string for rebalancing (e.g. "MS" for month start)
      lookback_periods: List of lookback periods in months (e.g. [3, 6, 9])
      aum: Starting assets under management (e.g. 1,000,000)
      top_n: Total number of positions to hold (e.g. 6)
      risk_on_list: List of risk-on asset tickers.
      risk_off_list: List of risk-off asset tickers.
      correlation_lookback: Lookback period (in months) for computing correlation (default 12)
      
    Returns:
      result_df: DataFrame with each rebalance date, portfolio AUM, and details of positions.
    """
    prices_df['Date'] = pd.to_datetime(prices_df['Date'])
    prices_df.sort_values('Date', inplace=True)
    
    # Build rebalancing dates
    rebalance_dates = pd.date_range(start=start_date, end=end_date, freq=rebalance_frequency)
    current_aum = aum
    result_records = []
    current_portfolio = {}  # {ticker: (quantity, entry_price)}
    
    for i, reb_date in enumerate(rebalance_dates):
        # Update portfolio AUM based on current prices (mark-to-market)
        if i > 0 and current_portfolio:
            portfolio_value = 0
            for ticker, (qty, entry_price) in current_portfolio.items():
                price_today = get_price_on_date(prices_df, reb_date, ticker)
                portfolio_value += qty * price_today
            current_aum = portfolio_value
        
        # Compute momentum scores for all risk-on assets using the correlation-adjusted scores approach
        risk_on_all = []
        for ticker in risk_on_list:
            agg_score, is_positive, _ = compute_aggregated_momentum(prices_df, reb_date, ticker, lookback_periods, correlation_lookback, universe=risk_on_list)
            if agg_score is not None:
                risk_on_all.append((ticker, agg_score, is_positive))
        risk_on_all = sorted(risk_on_all, key=lambda x: x[1], reverse=True)
        
        # Separate those with strictly positive momentum (i.e. all adjusted signals > 0)
        positive_risk_on = [ticker for ticker, score, is_positive in risk_on_all if is_positive]
        
        # Build final selection to always have exactly top_n (6) assets:
        if len(positive_risk_on) >= 6:
            final_selection = positive_risk_on[:6]
        elif len(positive_risk_on) == 5:
            final_selection = positive_risk_on + risk_off_list[:1]
        elif len(positive_risk_on) == 4:
            final_selection = positive_risk_on + risk_off_list[:2]
        else:
            # Fewer than 4 positive risk-on: start with available positive ones plus both risk-off
            final_selection = positive_risk_on + risk_off_list[:2]
            # Fill remaining slots with top-ranked risk-on assets regardless of sign
            for ticker, score, is_positive in risk_on_all:
                if ticker not in final_selection:
                    final_selection.append(ticker)
                if len(final_selection) == 6:
                    break
        
        # Ensure final_selection always has exactly top_n assets
        final_selection = final_selection[:6]
        
        # Allocate equal weight among the selected assets
        allocation = current_aum / len(final_selection) if final_selection else 0
        positions = {}
        for ticker in final_selection:
            price_at_entry = get_price_on_date(prices_df, reb_date, ticker)
            qty = allocation / price_at_entry if price_at_entry != 0 else 0
            positions[ticker] = (qty, price_at_entry)
        
        record = {
            'Rebalance Date': reb_date,
            'Final AUM': current_aum,
            'Selected Assets': final_selection,
            'Quantities': [positions[ticker][0] for ticker in final_selection],
            'Entry Prices': [positions[ticker][1] for ticker in final_selection]
        }
        result_records.append(record)
        current_portfolio = positions.copy()
    
    result_df = pd.DataFrame(result_records)
    return result_df

# --- Example usage ---

# Assume 'prices' is your DataFrame with a "Date" column and 15 asset price columns.
# risk_on_list: first 13 tickers (risk-on)
# risk_off_list: last 2 tickers (risk-off)
risk_on_list = list(prices.columns[1:14])
risk_off_list = list(prices.columns[14:16])

result_df = backtest_momentum_strategy(
    prices_df=prices, 
    start_date="2024-01-01", 
    end_date="2025-01-01",
    rebalance_frequency="2MS",  # every two months for example
    lookback_periods=[3, 6, 9],
    aum=1000000, 
    top_n=6,
    risk_on_list=risk_on_list,
    risk_off_list=risk_off_list,
    correlation_lookback=12
)

print(result_df)
Editor is loading...
Leave a Comment