Tensorboard graphs
This include loss and accuracy graphs for both training and validation loopsunknown
python
3 years ago
1.1 kB
9
Indexable
#CODE FOR LOSS & ACCURACY GRAPHS USING TENSORBOARD
#import statements
from torch.utils.tensorboard import SummaryWriter
tb = SummaryWriter('runs/ich_detection_experiment_1')
#TRAINING---
#We are gonna do same as we did inside validation
#Insert below code before loop starts
new = []
train_pred = np.zeros((len(train_dataset) * n_classes, 1))
#Insert below code after train loss calculation
#create a variable "tr_correct" just like "tr_loss"
new.append(torch.sigmoid(pred).detach().cpu())
new1=torch.sigmoid(pred).detach().cpu()>=0.5
tr_correct += torch.sum(new1 == labels)
#After training loss print statement
tb.add_scalar("Training Loss", tr_loss, epoch)
tb.add_scalar("Training Accuracy", tr_correct/ len(train_dataset), epoch)
#FINISHED TRAINING---
#VALIDATION---
#Again create a variable "tr_correct" just like "tr_loss"
tr_correct += torch.sum(new1 == labels)
#After training loss print statement
tb.add_scalar("Validation Loss", tr_loss, epoch)
tb.add_scalar("Validation Accuracy", tr_correct/ len(validation_dataset), epoch)
#END---
Editor is loading...