Tensorboard graphs
This include loss and accuracy graphs for both training and validation loopsunknown
python
2 years ago
1.1 kB
2
Indexable
Never
#CODE FOR LOSS & ACCURACY GRAPHS USING TENSORBOARD #import statements from torch.utils.tensorboard import SummaryWriter tb = SummaryWriter('runs/ich_detection_experiment_1') #TRAINING--- #We are gonna do same as we did inside validation #Insert below code before loop starts new = [] train_pred = np.zeros((len(train_dataset) * n_classes, 1)) #Insert below code after train loss calculation #create a variable "tr_correct" just like "tr_loss" new.append(torch.sigmoid(pred).detach().cpu()) new1=torch.sigmoid(pred).detach().cpu()>=0.5 tr_correct += torch.sum(new1 == labels) #After training loss print statement tb.add_scalar("Training Loss", tr_loss, epoch) tb.add_scalar("Training Accuracy", tr_correct/ len(train_dataset), epoch) #FINISHED TRAINING--- #VALIDATION--- #Again create a variable "tr_correct" just like "tr_loss" tr_correct += torch.sum(new1 == labels) #After training loss print statement tb.add_scalar("Validation Loss", tr_loss, epoch) tb.add_scalar("Validation Accuracy", tr_correct/ len(validation_dataset), epoch) #END---