Untitled
def __init__(self, field_dims, embed_dim, num_layers, mlp_dims, dropout): super().__init__() self.embedding = FeaturesEmbedding(field_dims, embed_dim) self.embed_output_dim = len(field_dims) * embed_dim self.cn = CrossNetwork(self.embed_output_dim, num_layers) #self.mlp = MultiLayerPerceptron(self.embed_output_dim, mlp_dims, dropout, output_layer=False) self.linear = torch.nn.Linear(self.embed_output_dim, 1) #self.linear = FeaturesLinear(field_dims, is_multival=is_multivalued) #self.linear = torch.nn.Linear(mlp_dims[-1] + self.embed_output_dim, 1) def forward(self, x): """ :param x: Long tensor of size ``(batch_size, num_fields)`` """ embed_x, reg_emb = self.embedding(x) embed_x = embed_x.view(-1, self.embed_output_dim) x_l1, reg_cn = self.cn(embed_x) weights = self.linear.weight # Tensor of shape (1, embed_output_dim) reg_lin = torch.sum(weights ** 2) #h_l2 = self.mlp(embed_x) #x_stack = torch.cat([x_l1, h_l2], dim=1) x_stack = torch.cat([x_l1], dim=1) p, reg_lin = self.linear(x_stack) return (p.squeeze(1)), [reg_emb,reg_cn + reg_lin]
Leave a Comment