Untitled
unknown
python
3 years ago
2.4 kB
12
Indexable
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
# loading the dataset to a Pandas DataFrame
credit_card_data = pd.read_csv('/content/credit_data.csv')
# first 5 rows of the dataset
credit_card_data.head()
credit_card_data.tail()
# dataset informations
credit_card_data.info()
# checking the number of missing values in each column
credit_card_data.isnull().sum()
# distribution of legit transactions & fraudulent transactions
credit_card_data['Class'].value_counts()
"""This Dataset is highly unblanced
0 --> Normal Transaction
1 --> fraudulent transaction
"""
# separating the data for analysis
legit = credit_card_data[credit_card_data.Class == 0]
fraud = credit_card_data[credit_card_data.Class == 1]
print(legit.shape)
print(fraud.shape)
# statistical measures of the data
legit.Amount.describe()
fraud.Amount.describe()
# compare the values for both transactions
credit_card_data.groupby('Class').mean()
"""Under-Sampling
Build a sample dataset containing similar distribution of normal transactions and Fraudulent Transactions
Number of Fraudulent Transactions --> 492
"""
legit_sample = legit.sample(n=492)
"""Concatenating two DataFrames"""
new_dataset = pd.concat([legit_sample, fraud], axis=0)
new_dataset.head()
new_dataset.tail()
new_dataset['Class'].value_counts()
new_dataset.groupby('Class').mean()
"""Splitting the data into Features & Targets"""
X = new_dataset.drop(columns='Class', axis=1)
Y = new_dataset['Class']
print(X)
print(Y)
"""Split the data into Training data & Testing Data"""
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y, random_state=2)
print(X.shape, X_train.shape, X_test.shape)
"""Model Training
Logistic Regression
"""
model = LogisticRegression()
# training the Logistic Regression Model with Training Data
model.fit(X_train, Y_train)
"""Model Evaluation
Accuracy Score
"""
# accuracy on training data
X_train_prediction = model.predict(X_train)
training_data_accuracy = accuracy_score(X_train_prediction, Y_train)
print('Accuracy on Training data : ', training_data_accuracy)
# accuracy on test data
X_test_prediction = model.predict(X_test)
test_data_accuracy = accuracy_score(X_test_prediction, Y_test)
print('Accuracy score on Test Data : ', test_data_accuracy)Editor is loading...