Untitled
# Copyright (C) 2018-2023 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import numpy as np import pytest import tensorflow as tf from common.tf_layer_test_class import CommonTFLayerTest class TestReverseSequence(CommonTFLayerTest): def _prepare_input(self, inputs_info): assert 'input:0' in inputs_info assert 'seq_lengths:0' in inputs_info input_shape = inputs_info['input:0'] seq_lengths_shape = inputs_info['seq_lengths:0'] inputs_data = {} inputs_data['input:0'] = np.random.randint(-50, 50, input_shape).astype(self.input_type) inputs_data['seq_lengths:0'] = np.random.randint(0, self.max_seq_length + 1, seq_lengths_shape).astype( self.seq_lengths_type) return inputs_data def create_reverse_sequence_net(self, input_shape, input_type, seq_lengths_type, seq_dim, batch_dim): self.input_type = input_type self.seq_lengths_type = seq_lengths_type assert 0 <= batch_dim and batch_dim < len(input_shape), "Incorrect `batch_dim` in the test case" assert 0 <= seq_dim and seq_dim < len(input_shape), "Incorrect `seq_dim` in the test case" self.max_seq_length = input_shape[seq_dim] batch_size = input_shape[batch_dim] tf.compat.v1.reset_default_graph() # Create the graph and model with tf.compat.v1.Session() as sess: input = tf.compat.v1.placeholder(input_type, input_shape, 'input') seq_lengths = tf.compat.v1.placeholder(seq_lengths_type, [batch_size], 'seq_lengths') tf.raw_ops.ReverseSequence(input=input, seq_lengths=seq_lengths, seq_dim=seq_dim, batch_dim=batch_dim) tf.compat.v1.global_variables_initializer() tf_net = sess.graph_def return tf_net, None test_data_basic = [ dict(input_shape=[2, 3], input_type=np.int32, seq_lengths_type=np.int64, seq_dim=1, batch_dim=0), dict(input_shape=[3, 6, 4], input_type=np.float32, seq_lengths_type=np.int32, seq_dim=2, batch_dim=0), dict(input_shape=[6, 3, 4, 2], input_type=np.float32, seq_lengths_type=np.int32, seq_dim=0, batch_dim=3), ] @pytest.mark.parametrize("params", test_data_basic) @pytest.mark.precommit_tf_fe @pytest.mark.nightly def test_reverse_sequence_basic(self, params, ie_device, precision, ir_version, temp_dir, use_legacy_frontend): self._test(*self.create_reverse_sequence_net(**params), ie_device, precision, ir_version, temp_dir=temp_dir, use_legacy_frontend=use_legacy_frontend) class TestReverseSequence(CommonTFLayerTest): def _prepare_input(self, inputs_info): assert 'input_real:0' in inputs_info assert 'input_imag:0' in inputs_info assert 'seq_lengths:0' in inputs_info input_shape = inputs_info['input_real:0'] seq_lengths_shape = inputs_info['seq_lengths:0'] inputs_data = {} inputs_data['input_real:0'] = np.random.randint(-50, 50, input_shape).astype(self.input_type) inputs_data['input_imag:0'] = np.random.randint(-50, 50, input_shape).astype(self.input_type) inputs_data['seq_lengths:0'] = np.random.randint(0, self.max_seq_length + 1, seq_lengths_shape).astype( self.seq_lengths_type) return inputs_data def create_reverse_sequence_net(self, input_shape, input_type, seq_lengths_type, seq_dim, batch_dim): self.input_type = input_type self.seq_lengths_type = seq_lengths_type assert 0 <= batch_dim and batch_dim < len(input_shape), "Incorrect `batch_dim` in the test case" assert 0 <= seq_dim and seq_dim < len(input_shape), "Incorrect `seq_dim` in the test case" self.max_seq_length = input_shape[seq_dim] batch_size = input_shape[batch_dim] tf.compat.v1.reset_default_graph() # Create the graph and model with tf.compat.v1.Session() as sess: input_real = tf.compat.v1.placeholder(input_type, input_shape, 'input_real') input_imag = tf.compat.v1.placeholder(input_type, input_shape, 'input_imag') input = tf.raw_ops.Complex(real=input_real, imag=input_imag) seq_lengths = tf.compat.v1.placeholder(seq_lengths_type, [batch_size], 'seq_lengths') tf.raw_ops.ReverseSequence(input=input, seq_lengths=seq_lengths, seq_dim=seq_dim, batch_dim=batch_dim) tf.compat.v1.global_variables_initializer() tf_net = sess.graph_def return tf_net, None test_data_basic = [ dict(input_shape=[2, 3], input_type=np.int32, seq_lengths_type=np.int64, seq_dim=1, batch_dim=0), dict(input_shape=[3, 6, 4], input_type=np.float32, seq_lengths_type=np.int32, seq_dim=2, batch_dim=0), dict(input_shape=[6, 3, 4, 2], input_type=np.float32, seq_lengths_type=np.int32, seq_dim=0, batch_dim=3), ] @pytest.mark.parametrize("params", test_data_basic) @pytest.mark.precommit_tf_fe @pytest.mark.nightly def test_reverse_sequence_basic(self, params, ie_device, precision, ir_version, temp_dir, use_legacy_frontend): self._test(*self.create_reverse_sequence_net(**params), ie_device, precision, ir_version, temp_dir=temp_dir, use_legacy_frontend=use_legacy_frontend)
Leave a Comment