Untitled
import os import pathlib import pandas as pd import numpy as np import matplotlib.pyplot as plt import scipy.sparse as scsp from warnings import simplefilter simplefilter(action="ignore", category=pd.errors.PerformanceWarning) import py_dss_interface from dss import DSS as dss script_path = os.path.dirname(os.path.abspath(__file__)) dss_file = pathlib.Path(script_path).joinpath( "feeders", "13bus", "IEEE13Nodeckt_com_loadshape.dss") #dss = py_dss_interface.DSS() # Acessa objetos DSS DSSText = dss.Text DSSCircuit = dss.ActiveCircuit DSSMonitors = DSSCircuit.Monitors # Executa 1 de 2: obtém tensão no "node" 670.3 usando monitor DSSText.Command = f"compile [{dss_file}]" DSSText.Command = "solve" DSSText.Command = "Export monitors load_670c_vi" DSSText.Command = "Plot monitor object= load_670c_vi channels=(1 )" # Executa 2 de 2: obtém tensão no "node" 670.3 usando loop 24x DSSText.Command = f"compile [{dss_file}]" # cria df de resultados df_voltage = pd.DataFrame( index=DSSCircuit.AllNodeNames, columns=[f'hora_{h}' for h in range(24)]) DSSText.Command = "set stepsize=1h" DSSText.Command = "set mode=yearly" DSSText.Command = "set number=1" basekv = 2.4 total_number = 24 for h in range(total_number): DSSCircuit.Solution.Solve() print(scsp.csr_matrix(dss.YMatrix.GetCompressedYMatrix())) vri = DSSCircuit.AllBusVolts #print(vri) # Gera valores aleatórios com distribuição normal (média 1, desvio padrão 0.05) random_factors = np.random.normal(1, 0.005, len(vri)//2) # Limita os valores na faixa de 0.9 a 1.1 random_factors = np.clip(random_factors, 0.95, 1.05) # Calcula os valores de tensão e aplica a aleatoriedade df_voltage[f'hora_{h}'] = [ ((vri[j] + 1j * vri[j+1]) / (basekv * 1000)) * random_factors[j//2] for j in range(0, len(vri), 2) ] #print(df_voltage) ''' fig, ax = plt.subplots() ax.plot(range(1, total_number+1), df_voltage.loc['670.3'].abs()) ax.ticklabel_format(useOffset=False) plt.xlabel("Tempo [Hora]") plt.ylabel("Tensão na barra 670.3 [PU]") plt.grid() plt.show() ''' # dict_voltage = df_voltage.to_dict(orient='list') dict_voltage = df_voltage.apply(lambda row: row.tolist(), axis=1).to_dict() #print(dict_voltage)
Leave a Comment