midterm_mnm
unknown
python
2 years ago
2.5 kB
12
Indexable
Never
#Cau1a_De1 num1 = [1, 3, 5, 7, 9, 10] num2 = [2, 4, 6, 8] num1[-1:] = num2 print(num1) # [1, 3, 5, 7, 9, 2, 4, 6, 8] #Cau1b_De1 num = [[1,2,3], [4,5,6], [10,11,12], [7,8,9]] print(max(num, key=sum)) # [10,11,12] #Cau1a_De2 num1 = [1, 3, 5, 7, 9, 10] num2 = [2, 4, 6, 8] num1[-len(num2)-2:1] = num2 print(num1) # [2, 4, 6, 8, 3, 5, 7, 9, 10] #Cau1b_De2 num = [[1,2,3], [4,5,6], [10,11,12], [7,8,9]] print(min(num, key=sum)) # [1,2,3] #Cau2_De1 str1 = input() my_dict = {} for letter in str1: my_dict[letter] = my_dict.get(letter, 0) + 1 print(my_dict) # 'w3resouce' # {'w': 1, '3': 1, 'r': 2, 'e': 2, 's': 1, 'o': 1, 'u': 1, 'c': 1} #Cau2_De2 dic1={1:10, 2:20} dic2={3:30, 4:40} dic3={5:50,6:60} dic4 = {} for d in (dic1, dic2, dic3): dic4.update(d) print(dic4) # {1: 10, 2: 20, 3: 30, 4: 40, 5: 50, 6: 60} # Cau3 def sort_on_specific_item(lst, n): result = sorted((lst), key=lambda x: x[n], reverse=False) return result # reverse: False will sort ascending, True will sort descending. Default is False items = [('item2', 10.12), ('item3', 25.10), ('item1', 24.50),('item4', 22.50)] print("Original list of tuples:") print(items) print("\nSort on n element of the tuple of the said list:") n = 1 print(sort_on_specific_item(items, n)) # Cau4_De1 """ Factorial Topic 11: Question 1 A function that calls itself is said to be recursive. The creation of recursive functions is a powerful technique to solve problem that can be broken down into smaller or simpler form. One common use is to find the factorial of a number. The factorial of a number N is simply the number multiplied by the factorial of (N-1). Complete the code given below to calculate and returns the factorial of a numeber. Examples >>> factorial(5) 120 >>> factorial(1) 1 >>> factorial(0) 1 """ x = int(input()) factorial = lambda x: x and x * factorial(x - 1) or 1 print(factorial(x)) # Cau4_De2 """ Greatest Common Divisor Topic 11: Question 4 The greatest common divisor (gcd) of 2 or more non-zero integers, is the largest positive integer that divides the numbers without a remainder. Write a function to compute the gcd of 2 integers using Euclid's algorithm: Examples >>> gcd(84, 18) 6 >>> gcd(112, 42) 14 >>> gcd(5, 4) 1 """ a,b = map(int, input().split()) gcd = lambda a,b: a if b ==0 else not a % b and b or gcd(b , a % b) print(gcd(a,b))