Untitled
unknown
plain_text
3 years ago
592 B
4
Indexable
def get_cosine_schedule_with_warmup( optimizer, num_warmup_steps, num_training_steps, num_cycles = 0.5, last_epoch = -1, ): def lr_lambda(current_step): # Warmup if current_step < num_warmup_steps: return float(current_step) / float(max(1, num_warmup_steps)) # decadence progress = float(current_step - num_warmup_steps) / float( max(1, num_training_steps - num_warmup_steps) ) return max( 0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)) ) return torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch)
Editor is loading...