Untitled
unknown
plain_text
2 years ago
3.2 kB
10
Indexable
import pandas as pd import os import matplotlib.pyplot as plt import scipy as scp from scipy.stats import spearmanr import seaborn as sns import numpy as np import matplotlib matplotlib.rcParams['figure.figsize'] = [6, 6] ###### df = pd.read_csv('Austrian Survey on Privacy.csv') df_KTP = df.iloc[:, [0,6,7,8,9,10] + list(range(145, 148)) + [169, 171, 177]] df_PP = df.iloc[:, [0,6,7,8,9,10,300,306,314,315,316,317,318,319,326,327,328,329,330,331,332]] df_KTP['knowledge_score'] = df_KTP.iloc[:,7:13].sum(axis=1, skipna=True) df_PP['trust_score_authorities'] = df_PP.iloc[:,8:15].sum(axis=1, skipna=True) df_PP['trust_score_big_tech'] = df_PP.iloc[:,15:20].sum(axis=1, skipna=True) df_PP['trust_score_authorities'] = df_PP['trust_score_authorities'].divide(6, fill_value=np.nan) df_PP['trust_score_big_tech'] = df_PP['trust_score_big_tech'].divide(5, fill_value=np.nan) df_PP['trust_score'] = df_PP.iloc[:,[14,20,21,22]].sum(axis=1, skipna=True) df_PP['trust_score'] = df_PP['trust_score'].replace(0, np.nan) df_KTP['knowledge_score'] = df_KTP['knowledge_score'].replace(0, np.nan) df_PP['trust_score_authorities'] = df_PP['trust_score_authorities'].replace(0, np.nan) df_PP['trust_score_big_tech'] = df_PP['trust_score_big_tech'].replace(0, np.nan) ###### df_PP['Please choose your age group'] = df_PP['Please choose your age group'].replace('Younger than 18', 1) df_PP['Please choose your age group'] = df_PP['Please choose your age group'].replace('18-24', 1) df_PP['Please choose your age group'] = df_PP['Please choose your age group'].replace('25-34', 2) df_PP['Please choose your age group'] = df_PP['Please choose your age group'].replace('35-44', 3) df_PP['Please choose your age group'] = df_PP['Please choose your age group'].replace('45-54', 4) df_PP['Please choose your age group'] = df_PP['Please choose your age group'].replace('55-64', 5) df_PP['Please choose your age group'] = df_PP['Please choose your age group'].replace('65-74', 6) df_PP['Please choose your age group'] = df_PP['Please choose your age group'].replace('Older than 75', 6) df_KTP['Please choose your age group'] = df_KTP['Please choose your age group'].replace('Younger than 18', 1) df_KTP['Please choose your age group'] = df_KTP['Please choose your age group'].replace('18-24', 1) df_KTP['Please choose your age group'] = df_KTP['Please choose your age group'].replace('25-34', 2) df_KTP['Please choose your age group'] = df_KTP['Please choose your age group'].replace('35-44', 3) df_KTP['Please choose your age group'] = df_KTP['Please choose your age group'].replace('45-54', 4) df_KTP['Please choose your age group'] = df_KTP['Please choose your age group'].replace('55-64', 5) df_KTP['Please choose your age group'] = df_KTP['Please choose your age group'].replace('65-74', 6) df_KTP['Please choose your age group'] = df_KTP['Please choose your age group'].replace('Older than 75', 6) ###### sns.regplot(data=df_KTP, x='Please choose your age group', y='knowledge_score', line_kws={'color': 'red'}) sns.violinplot(data=df_KTP, y='How confident are you with using digital technologies?', x='Please choose your age group') corr, pval = spearmanr(df_PP['Please choose your age group'], df_PP['trust_score'], nan_policy='omit')
Editor is loading...