Untitled
unknown
plain_text
a year ago
3.8 kB
17
Indexable
def after_task(memory_bus):
option = '''{
"title": {
"text": "Distribution of Electricity",
"subtext": "Fake Data"
},
"tooltip": {
"trigger": "axis",
"axisPointer": {
"type": "cross"
}
},
"toolbox": {
"show": true,
"feature": {
"saveAsImage": {}
}
},
"xAxis": {
"type": "category",
"boundaryGap": false,
"data": %s
},
"yAxis": {
"type": "value",
"axisLabel": {
"formatter": "{value} MB/s"
},
"axisPointer": {
"snap": true
}
},
"visualMap": {
"show": false,
"dimension": 0,
"pieces": [
{
"lte": 6,
"color": "green"
},
{
"gt": 6,
"lte": 8,
"color": "red"
},
{
"gt": 8,
"lte": 14,
"color": "green"
},
{
"gt": 14,
"lte": 17,
"color": "red"
},
{
"gt": 17,
"color": "green"
}
]
},
"series": [
{
"name": "Network Traffic",
"type": "line",
"smooth": true,
"data": %s,
"markArea": {
"itemStyle": {
"color": "rgba(255, 173, 177, 0.4)"
},
"data": [
[
{
"name": "Evening Peak",
"xAxis": "%s"
},
{
"xAxis": "%s"
}
]
]
}
}
]
}'''
from datetime import datetime
import json
source_data = memory_bus.get('task2')
predict_data = memory_bus.get('task3')
timeList = []
dataList = []
lastTimestamp = 0
predict_start_time = 0
predict_end_time = 0
for value in source_data['data']['result'][0]['values']:
timestamp = int(value[0])
timeStr = datetime.fromtimestamp(timestamp).strftime('%H:%M')
timeList.append(timeStr)
data = value[1]
if isinstance(data, str):
data = float(data.strip('"'))
dataList.append(data)
lastTimestamp = timestamp
predict_start_time = lastTimestamp + 300
predict_start_time_str = datetime.fromtimestamp(predict_start_time).strftime('%H:%M')
for value in predict_data['result']:
lastTimestamp += 300
timestamp = lastTimestamp
timeStr = datetime.fromtimestamp(timestamp).strftime('%H:%M')
timeList.append(timeStr)
data = value[1]
if isinstance(data, str):
data = float(data.strip('"'))
dataList.append(data)
predict_end_time = lastTimestamp
predict_end_time_str = datetime.fromtimestamp(predict_end_time).strftime('%H:%M')
option = option % (json.dumps(timeList), dataList, predict_start_time_str, predict_end_time_str)
option = json.loads(option)
result = {
"type": "echart",
"option": option
}
return resultEditor is loading...
Leave a Comment