Untitled
unknown
plain_text
a month ago
839 B
5
Indexable
def bayesian_dense(units): return tfp.layers.DenseVariational( units, make_prior_fn=lambda: tfp.layers.default_multivariate_normal_fn(loc=0.0, scale=1.0), make_posterior_fn=lambda: tfp.layers.default_mean_field_normal_fn(), kl_weight=1.0 / n_samples, activation=tf.nn.relu, ) model = tf.keras.Sequential([ bayesian_dense(16), bayesian_dense(16), tf.keras.layers.Dense(1, activation="sigmoid") ]) def neg_log_likelihood(y_true, y_pred): return tf.keras.losses.binary_crossentropy(y_true, y_pred) model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.01), loss=neg_log_likelihood, metrics=["accuracy"]) model.fit(x_train, y_train, epochs=100, batch_size=16, verbose=1) x_test = np.random.randn(20, 2).astype(np.float32) y_pred = model(x_test).numpy()
Editor is loading...
Leave a Comment