Untitled
user_9286359
plain_text
a year ago
1.2 kB
6
Indexable
import torch
import torch.nn as nn
import torch.onnx
# Define a single-layer convolutional model
class SingleLayerConvNet(nn.Module):
def __init__(self, in_channels=3, out_channels=16, kernel_size=3):
super(SingleLayerConvNet, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=1)
def forward(self, x):
return self.conv(x)
# Initialize the model
model = SingleLayerConvNet(in_channels=3, out_channels=16, kernel_size=3)
model.eval() # Set the model to evaluation mode
# Dummy input for ONNX export (batch size 1, 3 channels, 64x64 image)
dummy_input = torch.randn(1, 3, 64, 64)
# Path to save the ONNX model
onnx_path = "single_layer_conv.onnx"
# Export the model to ONNX
torch.onnx.export(
model, # Model to export
dummy_input, # Example input
onnx_path, # Path to save the ONNX file
export_params=True, # Store trained parameter weights inside the model
opset_version=11, # ONNX opset version
input_names=["input"], # Input tensor name
output_names=["output"] # Output tensor name
)
print(f"Model has been converted to ONNX and saved to {onnx_path}")Editor is loading...
Leave a Comment