Untitled
unknown
plain_text
a year ago
805 B
4
Indexable
import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm #Q4 -- (a) #given parameters P_FA = 1e-8 sigma_n_sq = 1 #variance of WGN Noise A_samples = np.linspace(0, 10, 100) P_D = np.zeros(100) N_1=50 f_1=0.2 j=0; for A in A_samples: #under H0 mu_0 = 0 var_0 = 0 for i in range(0,N_1): var_0 = var_0 + 4*(A**2)*(np.cos(2*np.pi *f_1*i)**2)*(sigma_n_sq**2) #under H1 mu_1 = 0 for i in range(0,N_1): mu_1 = mu_1 + 2*(A**2)*(np.cos(2*np.pi *f_1*i)**2) var_1 = var_0 #threshold gamma = norm.ppf(P_FA, loc=mu_0, scale=np.sqrt(var_0)) P_D[j] = norm.cdf(gamma, loc=mu_1, scale=np.sqrt(var_1)) j=j+1 plt.figure(figsize=(5,5)) plt.plot(A_samples, P_D, color='red') plt.xlabel('A') plt.ylabel('P_D') plt.show()
Editor is loading...
Leave a Comment