Untitled

 avatar
unknown
plain_text
2 years ago
1.9 kB
7
Indexable
def viterbi_bt(df_norm, cell):
    # Positions
    bins = sorted(list(df_norm.index))

    # Set of states (copy numbers)
    Q = range(max_copy_number+1)

    # Initialization v[copy_number][bin] = 0
    v = [ { bin : 0 for bin in bins } for c in range(max_copy_number + 1) ]
    bt = [ { bin : None for bin in bins } for c in range(max_copy_number + 1) ]

    for idx, bin in enumerate(bins):
        norm_count = float(df_norm.loc[bin][cell])

        # YOUR CODE HERE
        if idx == 0:
            for copy_number in Q:
                v[copy_number][bin] = initialLogProb(copy_number) + emissionLogProb(copy_number, norm_count)
        else:
            for copy_number in Q:
                max_ = -np.inf
                prev_copy_number = None
                for prev_q in Q:
                    temp = v[prev_q][bins[idx-1]] + transitionLogProb(prev_q, copy_number)
                    if max_ < temp:
                        max_ = temp
                        prev_copy_number = prev_q
                v[copy_number][bin] = max_ + emissionLogProb(copy_number, norm_count)
                bt[copy_number][bin] = prev_copy_number
        
    return v, bt

bins = sorted(list(df_norm.index))
Q = range(max_copy_number+1)

V = {}
BT = {}
C = {}
max_joint_probability = {}
for cell in list(df_norm.columns[3:]):
    V[cell], BT[cell] = viterbi_bt(df_norm, cell)
    C[cell] = {}

    max_prob = max_joint_prob(df_norm, V[cell])
    final_c = None
    final_bin = bins[-1]
    for c in Q:
        if V[cell][c][final_bin] == max_prob:
            final_c = c

    C[cell][final_bin] = final_c

    for idx in range(len(bins)-2, -1, -1):
        bin = bins[idx]
        next_bin = bins[idx + 1]
        next_bin_c = C[cell][next_bin]
        C[cell][bin] = BT[cell][next_bin_c][next_bin]

    max_joint_probability[cell] = max_prob
    print(cell, "--", "max prob:", max_prob)
Editor is loading...
Leave a Comment