parte2
unknown
python
a year ago
1.5 kB
5
Indexable
csv_directory = './csv2' # new dir song_data_backup = { 'Name': [], 'Genre': [], 'duration': [], 'sr': [], 'n_channels': [], 'est_bpm': [], 'avg_amplitude': [], # 'fft_transform': [], } for csv in os.listdir('./csv'): print(f'Reading CSV with name: {csv}') data_df = pd.read_csv(f'./csv/{csv}') # zero_crossings_array: np.array = np.array([]) genre = data_df["Genre"][0] df_data_template.to_csv(f'{csv_directory}/{genre}_data.csv') for song_name in data_df['Name']: print(f'Analyzing total zero crossings for song: {song_name}') row_df = data_df.loc[data_df['Name'] == song_name] sig, sr = AudioUtil().open(f'./content/Music_Genres_Dataset/{genre}/{song_name}') combined_sig = sig[0] + sig[1] / 2 # combinamos los dos canales de la canción en uno zero_rate: int = librosa.feature.zero_crossing_rate(np.array(combined_sig)) # zero_crossings_array = np.append(zero_crossings_array, total_zeroes) row_df['zero_crossing_rate'] = [zero_rate] # probably raises error for being a numpy array row_df.to_csv(f'{csv_directory}/{genre}_data.csv', mode='a', header=False, index=False) del row_df, sig, sr gc.collect() # data_df['total_zero_crossings'] = zero_crossings_array # print('SAVING...') # data_df.to_csv(f'{csv_directory}/{genre}_data.csv') # print('DONE') # del total_zeroes, zero_crossings_array, data_df gc.collect()
Editor is loading...
Leave a Comment