Mini Project

 avatar
unknown
plain_text
12 days ago
20 kB
7
Indexable
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>


// for lex
#define MAXLEN 256

// Token types
typedef enum {
    UNKNOWN, END, ENDFILE,
    INT, ID,
    ADDSUB, MULDIV,
    ASSIGN,
    LPAREN, RPAREN,
    AND, OR, XOR,
    INC, DEC,
    ADDSUB_ASSIGN
} TokenSet;

TokenSet getToken(void);
TokenSet curToken = UNKNOWN;
char lexeme[MAXLEN];
int inTable(char* str);
// Test if a token matches the current token
int match(TokenSet token);
// Get the next token
void advance(void);
// Get the lexeme of the current token
char *getLexeme(void);


// for parser
#define TBLSIZE 64
// Set PRINTERR to 1 to print error message while calling error()
// Make sure you set PRINTERR to 0 before you submit your code
#define PRINTERR 1

// Call this macro to print error message and exit the program
// This will also print where you called it in your program
#define error(errorNum) { \
    if (PRINTERR) \
        fprintf(stderr, "error() called at %s:%d: ", __FILE__, __LINE__); \
    err(errorNum); \
}

// Error types
typedef enum {
    UNDEFINED, MISPAREN, NOTNUMID, NOTFOUND, RUNOUT, NOTLVAL, DIVZERO, SYNTAXERR
} ErrorType;

// Structure of the symbol table
typedef struct {
    int val;
    char name[MAXLEN];
} Symbol;

// Structure of a tree node
typedef struct _Node {
    TokenSet data;
    int val;
    char lexeme[MAXLEN];
    struct _Node *left;
    struct _Node *right;
} BTNode;

int sbcount = 0;
Symbol table[TBLSIZE];

// Initialize the symbol table with builtin variables
void initTable(void);
// Get the value of a variable
int getval(char *str);
// Set the value of a variable
int setval(char *str, int val);
// Make a new node according to token type and lexeme
BTNode *makeNode(TokenSet tok, const char *lexe);
// Free the syntax tree
void freeTree(BTNode *root);
extern BTNode *factor(void);
extern BTNode* unary_expr(void);
extern BTNode* muldiv_expr_tail(BTNode* left);
extern BTNode* muldiv_expr(void);
extern BTNode* addsub_expr_tail(BTNode* left);
extern BTNode* addsub_expr(void);
extern BTNode* and_expr_tail(BTNode* left);
extern BTNode* and_expr(void);
extern BTNode* xor_expr_tail(BTNode* left);
extern BTNode* xor_expr(void);
extern BTNode* or_expr_tail(BTNode* left);
extern BTNode *or_expr(void);
extern BTNode* assign_expr(void);
extern void statement(void);
// Print error message and exit the program
void err(ErrorType errorNum);


// for codeGen
// Evaluate the syntax tree
int evaluateTree(BTNode *root);
// Print the syntax tree in prefix
void printPrefix(BTNode *root);
// Get assembly code of syntax tree
int getAssembly(BTNode *root, int r);

int flag = 0;

/*============================================================================================
lex implementation
============================================================================================*/

TokenSet getToken(void)
{
    int i = 0;
    char c = '\0';

    while ((c = fgetc(stdin)) == ' ' || c == '\t');

    if (isdigit(c)) {
        lexeme[0] = c;
        c = fgetc(stdin);
        i = 1;
        while (isdigit(c) && i < MAXLEN) {
            lexeme[i] = c;
            ++i;
            c = fgetc(stdin);
        }
        ungetc(c, stdin);
        lexeme[i] = '\0';
        return INT;
    } else if (c == '+' || c == '-') {//modify
        lexeme[0] = c;
        c = fgetc(stdin);
        if (c == '+') {
            lexeme[1] = c;
            lexeme[2] = '\0';
            return INC;
        } else if (c == '-') {
            lexeme[1] = c;
            lexeme[2] = '\0';
            return DEC;
        } else if (c == '=') {
            lexeme[1] = c;
            lexeme[2] = '\0';
            return ADDSUB_ASSIGN;
        } else{
            ungetc(c, stdin);
            lexeme[1] = '\0';
            return ADDSUB;
        }
    } else if (c == '*' || c == '/') {
        lexeme[0] = c;
        lexeme[1] = '\0';
        return MULDIV;
    } else if (c == '\n') {
        lexeme[0] = '\0';
        return END;
    } else if (c == '=') {
        strcpy(lexeme, "=");
        return ASSIGN;
    } else if (c == '(') {
        strcpy(lexeme, "(");
        return LPAREN;
    } else if (c == ')') {
        strcpy(lexeme, ")");
        return RPAREN;
    } else if (isalpha(c)) {
        lexeme[0] = c;
        c = fgetc(stdin);
        i = 1;
        while (isalpha(c) && i < MAXLEN) {
            lexeme[i] = c;
            ++i;
            c = fgetc(stdin);
        }
        ungetc(c, stdin);
        lexeme[i] = '\0';
        return ID;
    } else if (c == '&') {//modify
        lexeme[0] = c;
        lexeme[1] = '\0';
        return AND;
    } else if (c == '|') {//modify
        lexeme[0] = c;
        lexeme[1] = '\0';
        return OR;
    } else if (c == '^') {//modify
        lexeme[0] = c;
        lexeme[1] = '\0';
        return XOR;
    } else if (c == EOF) {
        return ENDFILE;
    } else {
        return UNKNOWN;
    }
}

int inTable(char* str) {
    for (int i = 0;i < sbcount;i++) {
        if (strcmp(table[i].name, str) == 0)
            return 1;
    }
    return 0;
}

void advance(void) {
    curToken = getToken();
}

int match(TokenSet token) {
    if (curToken == UNKNOWN)
        advance();
    return token == curToken;
}

char *getLexeme(void) {
    return lexeme;
}

/*============================================================================================
parser implementation
============================================================================================*/

void initTable(void) {
    strcpy(table[0].name, "x");
    table[0].val = 0;
    strcpy(table[1].name, "y");
    table[1].val = 0;
    strcpy(table[2].name, "z");
    table[2].val = 0;
    sbcount = 3;
}

int getval(char *str) {
    int i = 0;

    for (i = 0; i < sbcount; i++) {
    if (strcmp(str, table[i].name) == 0)
        return table[i].val;
    }
    if (sbcount >= TBLSIZE)
        error(RUNOUT);

    error(SYNTAXERR);

}

int getidx(char* str) {
    int i = 0;

    for (i = 0; i < sbcount; i++) {
        if (strcmp(str, table[i].name) == 0)
            return 4 * i;
    }
    //printf("getidx : error\n");
    error(SYNTAXERR);
    return -1;
}

int setval(char *str, int val) {
    int i = 0;
    //printf("setval : %s , %d\n", str, val);
    for (i = 0; i < sbcount; i++) {
        if (strcmp(str, table[i].name) == 0) {
            table[i].val = val;
            return val;
        }
    }

    if (sbcount >= TBLSIZE)
        error(RUNOUT);

    strcpy(table[sbcount].name, str);
    table[sbcount].val = val;
    sbcount++;
    return val;
}

BTNode *makeNode(TokenSet tok, const char *lexe) {
    BTNode *node = (BTNode*)malloc(sizeof(BTNode));
    strcpy(node->lexeme, lexe);
    node->data = tok;
    node->val = 0;
    node->left = NULL;
    node->right = NULL;
    return node;
}

void freeTree(BTNode *root) {
    if (root != NULL) {
        freeTree(root->left);
        freeTree(root->right);
        free(root);
    }
}

BTNode *factor(void) {
    BTNode *retp = NULL, *left = NULL;

    if (match(INT)) {
        retp = makeNode(INT, getLexeme());
        advance();
    } else if (match(ID)) {
        retp = makeNode(ID, getLexeme());
        advance();
    } else if (match(INC)) {
        retp = makeNode(INC, getLexeme());
        advance();
        retp->right = makeNode(INT, "1");
        retp->left = factor();
    } else if (match(DEC)) {
        retp = makeNode(DEC, getLexeme());
        advance();
        retp->right = makeNode(INT, "1");
        retp->left = factor();
    } else if (match(LPAREN)) {
        advance();
        retp = assign_expr();
        if (match(RPAREN))
            advance();
        else
            error(MISPAREN);
    } else {
        error(NOTNUMID);
    }
    return retp;
}

//BTNode *term(void) {
//    BTNode *node = factor();
//    return term_tail(node);
//}
//BTNode *term_tail(BTNode *left) {
//    BTNode *node = NULL;
//
//    if (match(MULDIV)) {
//        node = makeNode(MULDIV, getLexeme());
//        advance();
//        node->left = left;
//        node->right = factor();
//        return term_tail(node);
//    } else {
//        return left;
//    }
//}
//BTNode *expr(void) {
//    BTNode *node = term();
//    return expr_tail(node);
//}
//BTNode *expr_tail(BTNode *left) {
//    BTNode *node = NULL;
//
//    if (match(ADDSUB)) {
//        node = makeNode(ADDSUB, getLexeme());
//        advance();
//        node->left = left;
//        node->right = term();
//        return expr_tail(node);
//    } else {
//        return left;
//    }
//}

BTNode* unary_expr(void) {
    BTNode* node = NULL;

    if (match(ADDSUB)) {
        node = makeNode(ADDSUB, getLexeme());
        advance();
        node->left = makeNode(INT, "0");
        node->right = unary_expr();
    }
    else {
        node = factor();
    }
    return node;
}

BTNode* muldiv_expr(void) {
    BTNode* node = unary_expr();
    return muldiv_expr_tail(node);
}

BTNode* muldiv_expr_tail(BTNode* left) {
    BTNode* node = NULL;

    if (match(MULDIV)) {
        node = makeNode(MULDIV, getLexeme());
        advance();
        node->left = left;
        node->right = unary_expr();
        return muldiv_expr_tail(node);
    }
    else {
        return left;
    }
}

BTNode* addsub_expr(void) {
    BTNode* node = muldiv_expr();
    return addsub_expr_tail(node);
}

BTNode* addsub_expr_tail(BTNode* left) {
    BTNode* node = NULL;

    if (match(ADDSUB)) {
        node = makeNode(ADDSUB, getLexeme());
        advance();
        node->left = left;
        node->right = muldiv_expr();
        return addsub_expr_tail(node);
    }
    else {
        return left;
    }
}

BTNode* and_expr(void) {
    BTNode* node = addsub_expr();
    return and_expr_tail(node);
}

BTNode* and_expr_tail(BTNode* left) {
    BTNode* node = NULL;

    if (match(AND)) {
        node = makeNode(AND, getLexeme());
        advance();
        node->left = left;
        node->right = addsub_expr();
        return and_expr_tail(node);
    }
    else {
        return left;
    }
}

BTNode* xor_expr(void) {
    BTNode* node = and_expr();
    return xor_expr_tail(node);
}

BTNode* xor_expr_tail(BTNode* left) {
    BTNode* node = NULL;

    if (match(XOR)) {
        node = makeNode(XOR, getLexeme());
        advance();
        node->left = left;
        node->right = and_expr();
        return xor_expr_tail(node);
    }
    else {
        return left;
    }
}

BTNode* or_expr(void) {
    BTNode* node = xor_expr();
    return or_expr_tail(node);
}

BTNode* or_expr_tail(BTNode* left) {
    BTNode* node = NULL;

    if (match(OR)) {
        node = makeNode(OR, getLexeme());
        advance();
        node->left = left;
        node->right = xor_expr();
        return or_expr_tail(node);
    }
    else {
        return left;
    }
}

BTNode* assign_expr(void) {
    BTNode* node = NULL, * left = NULL;

    left = or_expr();
    if (match(ASSIGN)) {
        if (left->data != ID) error(SYNTAXERR);
        node = makeNode(ASSIGN, getLexeme());
        advance();
        node->left = left;
        node->right = assign_expr();
    }
    else if (match(ADDSUB_ASSIGN)) {
        if (left->data != ID) error(SYNTAXERR);
        node = makeNode(ADDSUB_ASSIGN, getLexeme());
        advance();
        node->left = left;
        node->right = assign_expr();
    }
    else node = left;
    return node;
}


void statement(void) {
    BTNode *retp = NULL;

    if (match(ENDFILE)) {
        printf("MOV r0 [0]\nMOV r1 [4]\nMOV r2 [8]\n");
        printf("EXIT 0\n");
        exit(0);
    } else if (match(END)) {
        //printf(">> ");
        advance();
    } else {
        retp = assign_expr();
        if (match(END)) {
            int k = evaluateTree(retp);
            int d = getAssembly(retp, 0);

            //printf("Prefix traversal: ");
            //printPrefix(retp);
            //printf("\n");
            freeTree(retp);
            //printf(">> ");
            advance();
        } else {
            error(SYNTAXERR);
        }
    }
}

void err(ErrorType errorNum) {
    if (PRINTERR) {
        printf("EXIT 1\n");
        fprintf(stderr, "error: ");
        switch (errorNum) {
            case MISPAREN:
                fprintf(stderr, "mismatched parenthesis\n");
                break;
            case NOTNUMID:
                fprintf(stderr, "number or identifier expected\n");
                break;
            case NOTFOUND:
                fprintf(stderr, "variable not defined\n");
                break;
            case RUNOUT:
                fprintf(stderr, "out of memory\n");
                break;
            case NOTLVAL:
                fprintf(stderr, "lvalue required as an operand\n");
                break;
            case DIVZERO:
                fprintf(stderr, "divide by constant zero\n");
                break;
            case SYNTAXERR:
                fprintf(stderr, "syntax error\n");
                break;
            default:
                fprintf(stderr, "undefined error\n");
                break;
        }
    }
    exit(0);
}


/*============================================================================================
codeGen implementation
============================================================================================*/

int getAssembly(BTNode *root, int r) {
    if (root != NULL) {
        int num, reg1, reg2;
        switch (root->data) {
        case ID:
            printf("MOV r%d [%d]\n", r, getidx(root->lexeme));
            break;
        case INT:
            num = atoi(root->lexeme);
            printf("MOV r%d %d\n", r, num);
            break;
        case ASSIGN:
            reg1 = getAssembly(root->right, r);
            printf("MOV [%d] r%d\n", getidx(root->left->lexeme), reg1);
            break;
        case AND:
            reg1 = getAssembly(root->left, r);
            reg2 = getAssembly(root->right, r + 1);
            printf("AND r%d r%d\n", reg1, reg2);
            break;
        case OR:
            reg1 = getAssembly(root->left, r);
            reg2 = getAssembly(root->right, r + 1);
            printf("OR r%d r%d\n", reg1, reg2);
            break;
        case XOR:
            reg1 = getAssembly(root->left, r);
            reg2 = getAssembly(root->right, r + 1);
            printf("XOR r%d r%d\n", reg1, reg2);
            break;
        case INC:
            reg1 = getAssembly(root->left, r);
            reg2 = getAssembly(root->right, r + 1);
            printf("ADD r%d r%d\n", reg1, reg2);
            printf("MOV [%d] r%d\n", getidx(root->left->lexeme), r);
            break;
        case DEC:
            reg1 = getAssembly(root->left, r);
            reg2 = getAssembly(root->right, r + 1);
            printf("SUB r%d r%d\n", reg1, reg2);
            printf("MOV [%d] r%d\n", getidx(root->left->lexeme), r);
            break;
        case ADDSUB_ASSIGN:
            if (strcmp(root->lexeme, "+=") == 0) {
                reg1 = getAssembly(root->left, r);
                reg2 = getAssembly(root->right, r+1);
                printf("ADD r%d r%d\n", reg1, reg2);
                printf("MOV [%d] r%d\n", getidx(root->left->lexeme), r);
                break;
            }else if (strcmp(root->lexeme, "-=") == 0) {
                reg1 = getAssembly(root->left, r);
                reg2 = getAssembly(root->right, r + 1);
                printf("SUB r%d r%d\n", reg1, reg2);
                printf("MOV [%d] r%d\n", getidx(root->left->lexeme), r);
                break;
            }
        case ADDSUB:
        case MULDIV:
            if (strcmp(root->lexeme, "+") == 0) {
                reg1 = getAssembly(root->left, r);
                reg2 = getAssembly(root->right, r + 1);
                printf("ADD r%d r%d\n", reg1, reg2);
                break;
            }else if (strcmp(root->lexeme, "-") == 0) {
                reg1 = getAssembly(root->left, r);
                reg2 = getAssembly(root->right, r + 1);
                printf("SUB r%d r%d\n", reg1, reg2);
                break;
            }
            else if (strcmp(root->lexeme, "*") == 0) {
                reg1 = getAssembly(root->left, r);
                reg2 = getAssembly(root->right, r + 1);
                printf("MUL r%d r%d\n", reg1, reg2);
                break;
            }
            else if (strcmp(root->lexeme, "/") == 0) {
                reg1 = getAssembly(root->left, r);
                reg2 = getAssembly(root->right, r + 1);
                printf("DIV r%d r%d\n", reg1, reg2);
                break;
            }
        default:
            r = 0;
        }
    }
    return r;
}

int evaluateTree(BTNode *root) {
    int retval = 0, lv = 0, rv = 0;

    if (root != NULL) {
        switch (root->data) {
            case ID:
                flag = 1;
                retval = getval(root->lexeme);
                break;
            case INT:
                retval = atoi(root->lexeme);
                break;
            case ASSIGN:
                flag = 1;
                rv = evaluateTree(root->right);
                retval = setval(root->left->lexeme, rv);
                break;
            case AND:
                lv = evaluateTree(root->left);
                rv = evaluateTree(root->right);
                retval = lv & rv;
                break;
            case OR:
                lv = evaluateTree(root->left);
                rv = evaluateTree(root->right);
                retval = lv | rv;
                break;
            case XOR:
                lv = evaluateTree(root->left);
                rv = evaluateTree(root->right);
                retval = lv ^ rv;
                break;
            case INC:
                flag = 1;
                rv = evaluateTree(root->right);
                retval = rv + 1;
                break;
            case DEC:
                flag = 1;
                rv = evaluateTree(root->right);
                retval = rv - 1;
                break;
            case ADDSUB_ASSIGN:
                lv = evaluateTree(root->left);
                rv = evaluateTree(root->right);
                retval = setval(root->left->lexeme, lv+rv);
                break;
            case ADDSUB:
            case MULDIV:

                lv = evaluateTree(root->left);
                flag = 0;
                rv = evaluateTree(root->right);
                if (strcmp(root->lexeme, "+") == 0) {
                    retval = lv + rv;
                } else if (strcmp(root->lexeme, "-") == 0) {
                    retval = lv - rv;
                } else if (strcmp(root->lexeme, "*") == 0) {
                    retval = lv * rv;
                } else if (strcmp(root->lexeme, "/") == 0) {
                    if (rv == 0){
                        //printf("flag : %d\n", flag);
                        if (flag) break;
                        else error(DIVZERO);
                    }else{
                        retval = lv / rv;
                    }

                }
                break;
            default:
                retval = 0;
        }
    }
    return retval;
}

void printPrefix(BTNode *root) {
    if (root != NULL) {
        printf("%s ", root->lexeme);
        printPrefix(root->left);
        printPrefix(root->right);
    }
}


/*============================================================================================
main
============================================================================================*/

// This package is a calculator
// It works like a Python interpretor
// Example:
// >> y = 2
// >> z = 2
// >> x = 3 * y + 4 / (2 * z)
// It will print the answer of every line
// You should turn it into an expression compiler
// And print the assembly code according to the input

// This is the grammar used in this package
// You can modify it according to the spec and the slide
// statement  :=  ENDFILE | END | expr END
// expr    	  :=  term expr_tail
// expr_tail  :=  ADDSUB term expr_tail | NiL
// term 	  :=  factor term_tail
// term_tail  :=  MULDIV factor term_tail| NiL
// factor	  :=  INT | ADDSUB INT |
//		   	      ID  | ADDSUB ID  |
//		   	      ID ASSIGN expr |
//		   	      LPAREN expr RPAREN |
//		   	      ADDSUB LPAREN expr RPAREN

int main() {
    initTable();
    //printf(">> ");
    while (1) {
        statement();
    }
    return 0;
}


Editor is loading...
Leave a Comment