Code-
from flask import jsonify, request, Flask, render_template, json
from feature_engineering import feature_engineering
from model_training import get_top_persons_who_resolved
from sklearn.preprocessing import LabelEncoder
import pandas as pd
import pdb
from urllib.parse import quote, unquote
import ast
import json
from pandas.io.json import json_normalize
app = Flask(__name__)
app.app_context().push()
@app.route('/run_recommendation', methods=['POST'])
def run_recommendation():
#pdb.set_trace()
if request.method =='POST':
param_vals = request.args.get('ticket_data') # Retrieve the JSON data from the request body
#print("param_vals: ", param_vals)
# URL-decode the ticket_data
ticket_data_encoded = unquote(param_vals)
# Convert the decoded string back to a dictionary
ticket_data = ast.literal_eval(ticket_data_encoded)
ticket_data= str(ticket_data)
json_data = ast.literal_eval(ticket_data)
recommendations=get_top_persons_who_resolved(pred_data)
for i, rec in enumerate(recommendations.iterrows()):
index, row = rec
print(f"Recommendation {i+1}: User {row['person_who_resolved']}, Owner User ID {row['owner_user_id']}, Role Name {row['role_name']}")
return jsonify(recommendations)
if __name__ == "__main__":
app.run(host='100.187.21.56', port=8895, threaded=True)
Error on sending request-
File "/tmp/ipykernel_25888/1424686922.py", line 59, in run_recommendation
recommendations=get_top_persons_who_resolved(pred_data)
File "/Analytics/venv/Jup/CAPE_ServicePlus_UC/model_training.py", line 57, in get_top_persons_who_resolved
predicted_output_data=output_df.iloc[similar_indices]
File "/Analytics/venv/CAPEANALYTICS/lib/python3.8/site-packages/pandas/core/indexing.py", line 925, in __getitem__
return self._getitem_tuple(key)
File "/Analytics/venv/CAPEANALYTICS/lib/python3.8/site-packages/pandas/core/indexing.py", line 1506, in _getitem_tuple
self._has_valid_tuple(tup)
File "/Analytics/venv/CAPEANALYTICS/lib/python3.8/site-packages/pandas/core/indexing.py", line 754, in _has_valid_tuple
self._validate_key(k, i)
File "/Analytics/venv/CAPEANALYTICS/lib/python3.8/site-packages/pandas/core/indexing.py", line 1424, in _validate_key
raise IndexError("positional indexers are out-of-bounds")
IndexError: positional indexers are out-of-bounds
SO it goes into get_top_persons_who_resolved function and faces this issue-
COde for get_top_persons_who_resolved is -
def get_top_persons_who_resolved(pred_data):
distance_metric='cosine'
print("pred_data: ", pred_data)
row=feature_engineering(pred_data)
print("row: ", row)
label_enc = LabelEncoder()
#row['role_name_encoded'] = label_enc.fit_transform(row['role_name'])
#row['role_name_decoded'] = label_enc.inverse_transform(row['role_name_encoded'])
# Link the X vector with index
#index = row.index.values
##Fetching the ticket data details from API
#pdb.set_trace()
ticket_data= ticket_data = pd.concat(map(pd.read_csv, ['/Analytics/venv/Jup/CAPE_ServicePlus_UC/ServicePlusIncidentData_Post_01-01-2019_Till_07-07-2019.csv', '/Analytics/venv/Jup/CAPE_ServicePlus_UC/ServicePlusTicket_Data_Till-2019-01-01.csv']), ignore_index=True)
df=feature_engineering(ticket_data)
#print("Dataframe",df)
# Sample training data with text features
train_data = df.drop(columns=['person_who_resolved','owner_user_id','role_name'])
#print("Train data",train_data)
output_df =df[['person_who_resolved','owner_user_id','role_name']]
print("Output Columns",output_df)
# New data for similarity calculation
new_data = row
print("New Data",new_data)
# Create TF-IDF vectorizer and fit on training data
#vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(train_data)
# Transform new data using the same vectorizer
X_new = vectorizer.transform(new_data)
# Calculate cosine similarity between new data and training data
similarity_matrix = cosine_similarity(X_new, X)
print("Similarity Matrix:",similarity_matrix)
# Find the most similar training data indices for each new data point
similar_indices = np.where(similarity_matrix > 0.5)
print('Similar Indices',similar_indices)
# Get the corresponding output TF-IDF vectors for new data
predicted_output_data=output_df.iloc[similar_indices]
print("Predicted Output",predicted_output_data)
print("Similarity Matrix:")
print(similarity_matrix)
print("\nSimilar Data Indices with Cosine Similarity > 0.5:", similar_indices)
print("\nPredicted Output Data:")
print(predicted_output_data)
so similar indices we are getting output-
Similar Indices (array([0, 1, 2, 3, 4, 5]), array([ 3, 4, 5, 6, 7, 16]))
but later on its not getting predicted_output_data.
If you want I can share the code for feature_engineering() function as well.