Untitled
unknown
python
a year ago
880 B
2
Indexable
def build_model(input_shape, num_classes): inputs = Input(shape=input_shape) x = TimeDistributed(Conv3D(32, (3, 3, 3), activation='relu'))(inputs) x = TimeDistributed(MaxPooling3D((2, 2, 2)))(x) x = TimeDistributed(Conv3D(64, (3, 3, 3), activation='relu'))(x) x = TimeDistributed(MaxPooling3D((2, 2, 2)))(x) x = TimeDistributed(Flatten())(x) x = LSTM(128, return_sequences=False)(x) x = Dense(128, activation='relu')(x) outputs = Dense(num_classes, activation='softmax')(x) model = Model(inputs, outputs) return model sequence_length = 10 # example sequence length img_shape = (16, 64, 64, 3) input_shape = (sequence_length, *img_shape) num_classes = 10 # example number of classes model = build_model(input_shape, num_classes) model.compile(optimizer=Adam(), loss='categorical_crossentropy', metrics=['accuracy']) model.summary()
Editor is loading...
Leave a Comment