Mohr's Circle
itsLu
matlab
a year ago
880 B
9
Indexable
%Variables sigx = -75; sigy = 60; tauxy = 45; %Euation of a circle is: (x - xc)^2 + (y - yc)^2 = R^2 %Computing principal stress R = sqrt(((sigx - sig y)/2)^2 + tauxy^2); C = (sigx + sigy)/2; sig1 = C + R; %Largest principal stress Sig2 = C - R; %Smallest principal stress %Define variable for normal stress sigma = linspace(sig2, sig1, 1001); %Vectoring function %Evaluate shear stress. Use + and - square root tau1 = sqrt(R^2 - (sigma - C).^2); tau2 = -tau1; plot(sigma, tau1, 'b', sigma, tau2, 'b'); xlabel('Sigma'); %Fix the aspect ratio so the circle would look like a %circle and not an ellipse axis('square'); %Add in diamater for principal stresses hold on; plot([sig1, sig2], [0, 0], 'k'); %Add in diamater for initial stress state plot([sigx, sigy], [-tauxy, tauxy], 'g'); %(Optional) Grid helps for visualization grid on;
Editor is loading...
Leave a Comment