Untitled
import re import time from langchain_groq import ChatGroq from langchain.prompts import ChatPromptTemplate from langchain.schema import StrOutputParser import pandas as pd from tqdm import tqdm import datetime class ConversationAnalyzer: def __init__(self, api_key, model_name="mixtral-8x7b-32768", max_retries=5, base_wait_time=60): self.model = ChatGroq(model_name=model_name, api_key=api_key) self.prompt = ChatPromptTemplate.from_messages([ ("system", "You are an expert in analyzing conversations. Your task is to determine the coherence of a given text. Focus on the overall coherence and natural flow of the text."), ("human", "Text: {text}\n\nAnalyze the coherence of this text and respond with a score between 0 (not at all coherent) and 1 (completely coherent), and explain your reasoning.") ]) self.chain = self.prompt | self.model | StrOutputParser() self.max_retries = max_retries self.base_wait_time = base_wait_time def analyze_text(self, text): for attempt in range(self.max_retries): try: result = self.chain.invoke({"text": text}) score_match = re.search(r"\b\d+(\.\d+)?\b", result) if score_match: score = float(score_match.group(0)) else: raise ValueError("No numeric score found in the result") explanation = result.split("\n", 1)[1].strip() if "\n" in result else result.strip() return score, explanation except Exception as e: if "rate_limit_exceeded" in str(e): wait_time = self.base_wait_time * (2 ** attempt) print(f"Rate limit exceeded. Waiting for {wait_time} seconds before retrying.") time.sleep(wait_time) elif attempt < self.max_retries - 1: print(f"Error analyzing text (attempt {attempt + 1}/{self.max_retries}): {e}") time.sleep(5) else: print(f"All retry attempts failed. Error: {e}") return 0.0, "Failed to analyze text after multiple attempts." def find_coherent_texts(loader, analyzer, file_name, log_file): coherent_texts = [] df = loader.load_data(file_name) total_texts = len(df) with open(log_file, 'a') as f: # Changed to append mode for idx in tqdm(range(total_texts), desc=f"Processing {file_name}"): text = df.loc[idx, 'sentence'] score, explanation = analyzer.analyze_text(text) if score > 0: coherent_texts.append({ 'index': idx, 'text': text, 'score': score, 'explanation': explanation }) log_entry = (f"Coherent text found with score {score}:\n" f"Text: {text}\n" f"Explanation: {explanation}\n" f"{'-' * 50}\n") f.write(log_entry) if score >= 0.8: print(f"Coherent text found with score {score}:") print(f"Text: {text}") print(f"Explanation: {explanation}") print("-" * 50) # Save intermediate results every 100 iterations if (idx + 1) % 100 == 0: intermediate_df = pd.DataFrame(coherent_texts) intermediate_df.to_csv(f'intermediate_results_{idx+1}.csv', index=False) print(f"Saved intermediate results at iteration {idx+1}") return pd.DataFrame(coherent_texts) def main(): try: start = datetime.datetime.now() print(start) loader = DataLoader() analyzer = ConversationAnalyzer(api_key="your_api_key_here") # Replace with your actual API key file_name = 'df_for_dori2.pkl' log_file = "logs.txt" results = find_coherent_texts(loader, analyzer, file_name, log_file) output_file = 'results.csv' results.to_csv(output_file, index=False) print("Saved results") # Load original dataframe to get additional information original_df = loader.load_data(file_name) # Add additional information to results results['path'] = results['index'].map(original_df['path']) results['start_cd'] = results['index'].map(original_df['start_cd']) results['end_cd'] = results['index'].map(original_df['end_cd']) results['times'] = results['index'].map(original_df['times']) # Reorder columns results = results[['index', 'path', 'text', 'start_cd', 'end_cd', 'times', 'score', 'explanation']] # Save results output_file = 'coherent_texts_results.csv' results.to_csv(output_file, index=False) print(f"Found {len(results)} coherent texts. Results saved to '{output_file}'") except Exception as e: print(f"Failed to run! Error: {e}") finally: end = datetime.datetime.now() print(end) print(f"Time that took: {end - start}") if __name__ == "__main__": main()
Leave a Comment