Untitled
unknown
python
a year ago
5.3 kB
12
Indexable
import re
import time
from langchain_groq import ChatGroq
from langchain.prompts import ChatPromptTemplate
from langchain.schema import StrOutputParser
import pandas as pd
from tqdm import tqdm
import datetime
class ConversationAnalyzer:
def __init__(self, api_key, model_name="mixtral-8x7b-32768", max_retries=5, base_wait_time=60):
self.model = ChatGroq(model_name=model_name, api_key=api_key)
self.prompt = ChatPromptTemplate.from_messages([
("system", "You are an expert in analyzing conversations. Your task is to determine the coherence of a given text. Focus on the overall coherence and natural flow of the text."),
("human", "Text: {text}\n\nAnalyze the coherence of this text and respond with a score between 0 (not at all coherent) and 1 (completely coherent), and explain your reasoning.")
])
self.chain = self.prompt | self.model | StrOutputParser()
self.max_retries = max_retries
self.base_wait_time = base_wait_time
def analyze_text(self, text):
for attempt in range(self.max_retries):
try:
result = self.chain.invoke({"text": text})
score_match = re.search(r"\b\d+(\.\d+)?\b", result)
if score_match:
score = float(score_match.group(0))
else:
raise ValueError("No numeric score found in the result")
explanation = result.split("\n", 1)[1].strip() if "\n" in result else result.strip()
return score, explanation
except Exception as e:
if "rate_limit_exceeded" in str(e):
wait_time = self.base_wait_time * (2 ** attempt)
print(f"Rate limit exceeded. Waiting for {wait_time} seconds before retrying.")
time.sleep(wait_time)
elif attempt < self.max_retries - 1:
print(f"Error analyzing text (attempt {attempt + 1}/{self.max_retries}): {e}")
time.sleep(5)
else:
print(f"All retry attempts failed. Error: {e}")
return 0.0, "Failed to analyze text after multiple attempts."
def find_coherent_texts(loader, analyzer, file_name, log_file):
coherent_texts = []
df = loader.load_data(file_name)
total_texts = len(df)
with open(log_file, 'a') as f: # Changed to append mode
for idx in tqdm(range(total_texts), desc=f"Processing {file_name}"):
text = df.loc[idx, 'sentence']
score, explanation = analyzer.analyze_text(text)
if score > 0:
coherent_texts.append({
'index': idx,
'text': text,
'score': score,
'explanation': explanation
})
log_entry = (f"Coherent text found with score {score}:\n"
f"Text: {text}\n"
f"Explanation: {explanation}\n"
f"{'-' * 50}\n")
f.write(log_entry)
if score >= 0.8:
print(f"Coherent text found with score {score}:")
print(f"Text: {text}")
print(f"Explanation: {explanation}")
print("-" * 50)
# Save intermediate results every 100 iterations
if (idx + 1) % 100 == 0:
intermediate_df = pd.DataFrame(coherent_texts)
intermediate_df.to_csv(f'intermediate_results_{idx+1}.csv', index=False)
print(f"Saved intermediate results at iteration {idx+1}")
return pd.DataFrame(coherent_texts)
def main():
try:
start = datetime.datetime.now()
print(start)
loader = DataLoader()
analyzer = ConversationAnalyzer(api_key="your_api_key_here") # Replace with your actual API key
file_name = 'df_for_dori2.pkl'
log_file = "logs.txt"
results = find_coherent_texts(loader, analyzer, file_name, log_file)
output_file = 'results.csv'
results.to_csv(output_file, index=False)
print("Saved results")
# Load original dataframe to get additional information
original_df = loader.load_data(file_name)
# Add additional information to results
results['path'] = results['index'].map(original_df['path'])
results['start_cd'] = results['index'].map(original_df['start_cd'])
results['end_cd'] = results['index'].map(original_df['end_cd'])
results['times'] = results['index'].map(original_df['times'])
# Reorder columns
results = results[['index', 'path', 'text', 'start_cd', 'end_cd', 'times', 'score', 'explanation']]
# Save results
output_file = 'coherent_texts_results.csv'
results.to_csv(output_file, index=False)
print(f"Found {len(results)} coherent texts. Results saved to '{output_file}'")
except Exception as e:
print(f"Failed to run! Error: {e}")
finally:
end = datetime.datetime.now()
print(end)
print(f"Time that took: {end - start}")
if __name__ == "__main__":
main()Editor is loading...
Leave a Comment