main.py
unknown
plain_text
3 years ago
28 kB
7
Indexable
import numpy as np import matplotlib.pyplot as plt import scipy from netCDF4 import Dataset as NetCDFFile from mpl_toolkits.basemap import Basemap import skfuzzy as fuzz from skfuzzy import control as ctrl from geopy import distance # FAIRE GAFFE, LES DONNES NETCDF SONT : [ORDONNEE;ABSCISSE] # mettre les notations de kauffman sur le rapport / dire que la T norm c'est min / Bibliographie,... TOUT METTRE # dire ce qu'on aurait pu faire si on avait plus de temps # longitude / latitude / time / d = divergence / r = humidity / t = temperature / u=uwind / v=vwind / vo=vortcity def plotNC(path, var, unite, titre): nc = NetCDFFile(path) lat = nc.variables['latitude'][:] lon = nc.variables['longitude'][:] time = nc.variables['time'][:] var = nc.variables[var][:] nc.close() print(var) map = Basemap(width=5000000, height=3500000, resolution='l', projection='cyl', llcrnrlon=lon.min(), llcrnrlat=lat.min(), urcrnrlon=lon.max(), urcrnrlat=lat.max(), lat_0=lat.mean(), lon_0=lon.mean()) lons, lats = np.meshgrid(lon, lat) xi, yi = map(lons, lats) map.drawmapboundary(fill_color='aqua') map.fillcontinents(color='coral', lake_color='aqua') map.drawcoastlines() parallels = np.arange(lat.min(), lat.max(), 5.) # make latitude lines every 5 degrees from xx to xx meridians = np.arange(lon.min(), lat.min(), 5.) # make longitude lines every 5 degrees from xx to xx map.drawparallels(parallels, labels=[1, 0, 0, 0], fontsize=10) map.drawmeridians(meridians, labels=[0, 0, 0, 1], fontsize=10) jour = 26 heure = 10 date_exact = jour * 24 + heure cs = map.pcolor(xi, yi, np.squeeze(var[date_exact, :, :])) cbar = map.colorbar(cs, location='bottom', pad="10%") cbar.set_label(unite) plt.title(titre) def plotTC(path): plt.subplot(3, 3, 1) plotNC(path, 'r', '%', 'Humidité relative') plt.plot(-82, 24, ms=10, marker="o", markeredgecolor="red") plt.subplot(3, 3, 2) plotNC(path, 'd', 'jsp', 'Divergence') plt.subplot(3, 3, 3) plotNC(path, 'vo', 'jsp', 'Vorticité') # plt.subplot(3, 3, 4) # plotNC(path, 't', 'Kelvin', 'Température') plt.subplot(3, 3, 5) plotNC(path, 'u', 'm/s', 'Uwind') # U wind = composante horizontontale plt.subplot(3, 3, 6) plotNC(path, 'v', 'm/s', 'Vwind') # V wind = composante verticale def plot_array(array, x, y): lon = met_to_deg(x) lat = met_to_deg(y) map = Basemap(width=5000000, height=3500000, resolution='l', projection='cyl', llcrnrlon=lon.min(), llcrnrlat=lat.min(), urcrnrlon=lon.max(), urcrnrlat=lat.max(), lat_0=lat.mean(), lon_0=lon.mean()) lons, lats = np.meshgrid(lon, lat) xi, yi = map(lons, lats) map.drawmapboundary(fill_color='aqua') map.fillcontinents(color='coral', lake_color='aqua') map.drawcoastlines() cs = map.pcolor(xi, yi, array) cbar = map.colorbar(cs, location='bottom', pad="10%") def input_fuzz(variable, input_to_fuzz): fuzz_input = [] for i in variable.terms.keys(): fuzz_input.append(fuzz.interp_membership(variable.universe, variable.terms[i].mf, input_to_fuzz)) return fuzz_input def IRR_2var(SF_rules, input_fuzz1, input_fuzz2): IRR = np.empty([len(SF_rules), 2]) k = -1 for j in range(0, len(SF_rules)): if (j % len(input_fuzz2)) == 0: k += 1 IRR[j, 0] = input_fuzz1[k] IRR[j, 1] = input_fuzz2[j % len(input_fuzz2)] return IRR def IRR_3var(SF_rules, input_fuzz1, input_fuzz2, input_fuzz3): IRR = np.empty([len(SF_rules), 3]) k = -1 m = -1 for j in range(0, len(SF_rules)): if (j % len(input_fuzz3)) == 0: k += 1 if (k % len(input_fuzz2)) == 0: m += 1 IRR[j, 0] = input_fuzz1[m] IRR[j, 1] = input_fuzz2[j % len(input_fuzz2)] IRR[j, 2] = input_fuzz3[j % len(input_fuzz3)] return IRR def SF1_compute(input_temperature, input_d_speed, input_time): pas = 0.01 temperature = ctrl.Antecedent(np.arange(263, 323, pas), 'Temperature (K)') d_speed = ctrl.Antecedent(np.arange(-100, 100, pas), 'Variation of wind speed (m/s)') time = ctrl.Antecedent(np.arange(0, 15, pas), 'Time since TC formation (days)') lifespan = ctrl.Consequent(np.arange(0, 15, pas), 'Lifespan') temperature['Low'] = fuzz.trapmf(temperature.universe, [263, 263, 293, 303]) temperature['Ok'] = fuzz.trapmf(temperature.universe, [293, 303, 323, 323]) d_speed['--'] = fuzz.trapmf(d_speed.universe, [-100, -100, -60, -20]) d_speed['-'] = fuzz.trimf(d_speed.universe, [-60, -30, 0]) d_speed['St'] = fuzz.trimf(d_speed.universe, [-30, 0, 20]) d_speed['+'] = fuzz.trimf(d_speed.universe, [0, 30, 60]) d_speed['++'] = fuzz.trapmf(d_speed.universe, [20, 60, 100, 100]) time['Young'] = fuzz.zmf(time.universe, 3, 6) time['Middle'] = fuzz.gaussmf(time.universe, 6, 1) time['Old'] = fuzz.smf(time.universe, 6, 9) lifespan['Dying+'] = fuzz.trapmf(lifespan.universe, [0, 0, 3, 5]) lifespan['Dying'] = fuzz.trimf(lifespan.universe, [3, 5, 7]) lifespan['St'] = fuzz.trimf(lifespan.universe, [5, 7, 10]) lifespan['Living'] = fuzz.trimf(lifespan.universe, [7, 10, 13]) lifespan['Living+'] = fuzz.trapmf(lifespan.universe, [10, 13, 15, 15]) lifespan.view() temperature.view() d_speed.view() time.view() SF1_rules = [ctrl.Rule(temperature['Low'] & d_speed['--'] & time['Young'], lifespan['Dying+']), ctrl.Rule(temperature['Low'] & d_speed['--'] & time['Middle'], lifespan['Dying+']), ctrl.Rule(temperature['Low'] & d_speed['--'] & time['Old'], lifespan['Dying+']), ctrl.Rule(temperature['Low'] & d_speed['-'] & time['Young'], lifespan['Dying']), ctrl.Rule(temperature['Low'] & d_speed['-'] & time['Middle'], lifespan['Dying+']), ctrl.Rule(temperature['Low'] & d_speed['-'] & time['Old'], lifespan['Dying+']), ctrl.Rule(temperature['Low'] & d_speed['St'] & time['Young'], lifespan['Dying']), ctrl.Rule(temperature['Low'] & d_speed['St'] & time['Middle'], lifespan['Dying']), ctrl.Rule(temperature['Low'] & d_speed['St'] & time['Old'], lifespan['Dying']), ctrl.Rule(temperature['Low'] & d_speed['+'] & time['Young'], lifespan['St']), ctrl.Rule(temperature['Low'] & d_speed['+'] & time['Middle'], lifespan['St']), ctrl.Rule(temperature['Low'] & d_speed['+'] & time['Old'], lifespan['St']), ctrl.Rule(temperature['Low'] & d_speed['++'] & time['Young'], lifespan['Living']), ctrl.Rule(temperature['Low'] & d_speed['++'] & time['Middle'], lifespan['Living']), ctrl.Rule(temperature['Low'] & d_speed['++'] & time['Old'], lifespan['Living']), ctrl.Rule(temperature['Ok'] & d_speed['--'] & time['Young'], lifespan['Dying']), ctrl.Rule(temperature['Ok'] & d_speed['--'] & time['Middle'], lifespan['Dying']), ctrl.Rule(temperature['Ok'] & d_speed['--'] & time['Old'], lifespan['Dying']), ctrl.Rule(temperature['Ok'] & d_speed['-'] & time['Young'], lifespan['Dying']), ctrl.Rule(temperature['Ok'] & d_speed['-'] & time['Middle'], lifespan['Dying']), ctrl.Rule(temperature['Ok'] & d_speed['-'] & time['Old'], lifespan['Dying']), ctrl.Rule(temperature['Ok'] & d_speed['St'] & time['Young'], lifespan['Living']), ctrl.Rule(temperature['Ok'] & d_speed['St'] & time['Middle'], lifespan['St']), ctrl.Rule(temperature['Ok'] & d_speed['St'] & time['Old'], lifespan['Dying']), ctrl.Rule(temperature['Ok'] & d_speed['+'] & time['Young'], lifespan['Living']), ctrl.Rule(temperature['Ok'] & d_speed['+'] & time['Middle'], lifespan['Living']), ctrl.Rule(temperature['Ok'] & d_speed['+'] & time['Old'], lifespan['Living']), ctrl.Rule(temperature['Ok'] & d_speed['++'] & time['Young'], lifespan['Living+']), ctrl.Rule(temperature['Ok'] & d_speed['++'] & time['Middle'], lifespan['Living+']), ctrl.Rule(temperature['Ok'] & d_speed['++'] & time['Old'], lifespan['Living+']), ] SF1_ctrl = ctrl.ControlSystem(SF1_rules) SF1 = ctrl.ControlSystemSimulation(SF1_ctrl) input_temperature_fuzz = input_fuzz(temperature, input_temperature) input_d_speed_fuzz = input_fuzz(d_speed, input_d_speed) input_time_fuzz = input_fuzz(time, input_time) print(input_temperature_fuzz) print(input_d_speed_fuzz) print(input_time_fuzz) IRR = IRR_3var(SF1_rules, input_temperature_fuzz, input_d_speed_fuzz, input_time_fuzz) declenchement = IRR.min(axis=1) print(IRR) print(declenchement) csq_SF1 = {} # variable de type dictionnaire for i in range(0, len(SF1_rules)): # on initialise à 0 pour chaque règle csq_SF1[str(SF1_rules[i].consequent)] = 0 for i in range(0, len(SF1_rules)): csq_i = str(SF1_rules[i].consequent) csq_SF1[csq_i] = max(csq_SF1[csq_i], declenchement[i]) # Comme dans le TP6 print("Conséquences SF1 :", csq_SF1) # return SF1 def SF2_compute(input_humidity, input_TC_size): pas = 0.01 humidity = ctrl.Antecedent(np.arange(0, 100, pas), 'humidity') # Humidity (%)' TC_size = ctrl.Antecedent(np.arange(0, 350, pas), 'TC_size') # TC size (km) TC_size_variation = ctrl.Consequent(np.arange(0, 60, pas), 'TC_var') # Variation of TC size for next day (km) humidity['--'] = fuzz.trapmf(humidity.universe, [0, 0, 20, 40]) # 20% humidity['-'] = fuzz.trimf(humidity.universe, [20, 40, 60]) # 40% humidity['+'] = fuzz.trimf(humidity.universe, [40, 60, 80]) # 60% humidity['++'] = fuzz.trapmf(humidity.universe, [60, 80, 100, 100]) # 80% TC_size['Little+'] = fuzz.trapmf(TC_size.universe, [0, 0, 75, 120]) TC_size['Little'] = fuzz.trimf(TC_size.universe, [75, 150, 200]) # TC_size['Normal'] = fuzz.trimf(TC_size.universe, [120, 150, 200]) TC_size['Huge'] = fuzz.trimf(TC_size.universe, [150, 200, 250]) TC_size['Huge+'] = fuzz.trapmf(TC_size.universe, [200, 250, 350, 350]) # 10 13 15 20 25 50 TC_size_variation['Very Low'] = fuzz.trapmf(TC_size_variation.universe, [0, 0, 10, 13]) # 10 TC_size_variation['Low'] = fuzz.trimf(TC_size_variation.universe, [10, 13, 15]) # 13 TC_size_variation['Quite Low'] = fuzz.trimf(TC_size_variation.universe, [13, 15, 20]) # 15 TC_size_variation['Quite High'] = fuzz.trimf(TC_size_variation.universe, [15, 20, 25]) # 20 TC_size_variation['High'] = fuzz.trimf(TC_size_variation.universe, [20, 25, 50]) # 25 TC_size_variation['Very High'] = fuzz.trapmf(TC_size_variation.universe, [25, 50, 50, 50]) # 50 humidity.view() TC_size.view() TC_size_variation.view() SF2_rules = [ctrl.Rule(humidity['--'] & TC_size['Little+'], TC_size_variation['Very Low']), ctrl.Rule(humidity['--'] & TC_size['Little'], TC_size_variation['Quite Low']), ctrl.Rule(humidity['--'] & TC_size['Huge'], TC_size_variation['Quite Low']), ctrl.Rule(humidity['--'] & TC_size['Huge+'], TC_size_variation['Quite Low']), ctrl.Rule(humidity['-'] & TC_size['Little+'], TC_size_variation['Low']), ctrl.Rule(humidity['-'] & TC_size['Little'], TC_size_variation['Quite Low']), ctrl.Rule(humidity['-'] & TC_size['Huge'], TC_size_variation['Quite Low']), ctrl.Rule(humidity['-'] & TC_size['Huge+'], TC_size_variation['Quite Low']), ctrl.Rule(humidity['+'] & TC_size['Little+'], TC_size_variation['Quite High']), ctrl.Rule(humidity['+'] & TC_size['Little'], TC_size_variation['Quite High']), ctrl.Rule(humidity['+'] & TC_size['Huge'], TC_size_variation['Quite High']), ctrl.Rule(humidity['+'] & TC_size['Huge+'], TC_size_variation['Quite High']), ctrl.Rule(humidity['++'] & TC_size['Little+'], TC_size_variation['High']), ctrl.Rule(humidity['++'] & TC_size['Little'], TC_size_variation['Very High']), ctrl.Rule(humidity['++'] & TC_size['Huge'], TC_size_variation['Very High']), ctrl.Rule(humidity['++'] & TC_size['Huge+'], TC_size_variation['Very Low'])] SF2_ctrl = ctrl.ControlSystem(SF2_rules) SF2 = ctrl.ControlSystemSimulation(SF2_ctrl) input_TC_size_fuzz = input_fuzz(TC_size, input_TC_size) input_humidity_fuzz = input_fuzz(humidity, input_humidity) IRR = IRR_2var(SF2_rules, input_humidity_fuzz, input_TC_size_fuzz) print(IRR) declenchement = IRR.min(axis=1) print(declenchement) csq_SF2 = {} # variable de type dictionnaire for i in range(0, len(SF2_rules)): # on initialise à 0 pour chaque règle csq_SF2[str(SF2_rules[i].consequent)] = 0 for i in range(0, len(SF2_rules)): csq_i = str(SF2_rules[i].consequent) csq_SF2[csq_i] = max(csq_SF2[csq_i], declenchement[i]) # Comme dans le TP6 print("Conséquences SF2 :", csq_SF2) # SF2.input['humidity'] = input_humidity # SF2.input['TC_size'] = input_TC_size # print(SF2.output['TC_var']) # TC_size_variation.view(sim=SF2) # https://stackoverflow.com/questions/11352047/finding-moving-average-from-data-points-in-python def movingaverage(interval, window_size): window = np.ones(int(window_size)) / float(window_size) return np.convolve(interval, window, 'same') def smooth_array(array, axis_array, smooth_parameter, axis): if axis == 0: # latitude for i in range(0, len(axis_array)): array[i, :] = movingaverage(array[i, :], smooth_parameter) elif axis == 1: # longitude for i in range(0, len(axis_array)): array[:, i] = movingaverage(array[:, i], smooth_parameter) return array def psi_compute(uwind, vwind, t): uwind = np.squeeze(uwind[t, :, :]) vwind = np.squeeze(vwind[t, :, :]) # var[temps,latitude,longitude] smooth = 5 intx = scipy.integrate.cumtrapz(vwind, lon, axis=1, initial=0)[0] inty = scipy.integrate.cumtrapz(uwind, lat, axis=0, initial=0) intx_av = np.zeros(np.shape(intx)) inty_av = np.zeros(np.shape(inty)) for i in range(0, len(lat)): inty_av[i, :] = movingaverage(inty[i, :], smooth) psi1 = intx - inty_av intx = scipy.integrate.cumtrapz(vwind, lon, axis=1, initial=0) inty = scipy.integrate.cumtrapz(uwind, lat, axis=0, initial=0)[:, 0][:, None] intx_av = np.zeros(np.shape(intx)) for i in range(0, len(lon)): intx_av[:, i] = movingaverage(intx[:, i], smooth) psi2 = intx_av - inty psi = 0.5 * (psi1 + psi2) plot_array(psi,lon,lat) return psi def cart_to_polar(x0, y0, x1, y1): # fonctionne avec des matrices x0 = met_to_deg(x0) y0 = met_to_deg(y0) x1 = met_to_deg(x1) y1 = met_to_deg(y1) x_ref = x1 - x0 y_ref = y1 - y0 x_ref, y_ref = np.meshgrid(x_ref, y_ref) r = np.sqrt(deg_to_met(x_ref) ** 2 + deg_to_met(y_ref) ** 2) angle = np.arctan2(x_ref, y_ref) - np.radians(90) return r, angle def psi_r1_compute(r, r_map, angle_map, psi): study = np.isclose(r_map, r, atol=20000) # On prend tous les points à une distance r du TC ; tol en m # Revoir la tolérance angle_psi = np.where(study, angle_map, 0) # On prend les valeurs d'angle à une distance r du TC, on met 0 aux autres psi_r = np.where(study, psi, np.nan) # On va stocker suivant theta = [0,2pi] les différentes valeurs de psi sur le rayon r # plot_array(psi_r,lon,lat) return psi_r def psi_TC_compute(x0, y0, study_univers): r_map, angle_map = cart_to_polar(x0, y0, lon, lat) psi_TC_r = [] # Liste : psi(r) psi_TC_map = np.zeros(np.shape(angle_map)) # Map : psi(x;y) k = 0 psi_inf = 0 i = 0 # Compteur stable = False # On se place ds le centre du TC, et on balaie selon x pour construire psi(r) for x1 in study_univers: y1 = y0 r1, angle1 = cart_to_polar(x0, y0, x1, y1) psi_r1 = psi_r1_compute(r1, r_map, angle_map, psi) to_add = np.nanmean(psi_r1) + psi_inf if not stable: to_add = np.nanmean(psi_r1) + psi_inf else: to_add = psi_TC_r[k] psi_TC_r.append(to_add) # là où il n'y a pas de NaN dans psi_r1 on met mean(psi_r1)+psi_inf, sinon on met psi_TC_map (= on change rien) mask = np.invert(np.isnan(psi_r1)) psi_TC_map = np.where(mask, to_add, psi_TC_map) # Test de Stabilité if i > 30: val_past = psi_TC_r[-30] / psi_TC_r[0] val_now = to_add / psi_TC_r[0] if abs(val_past - val_now) < 0.015: stable = True k = i # Si Stable, alors on fixe la valeur à 0 i += 1 return psi_TC_r, psi_TC_map def xy_to_indx_lonlat(x, y, lon, lat): idx_lon = np.where(np.isclose(lon, x, atol=25000))[-1] # sachant que la résolution est de env 25000 km idx_lat = np.where(np.isclose(lat, y, atol=25000))[-1] # au pire on a deux éléments if len(idx_lon) > 1: idx_lon = np.squeeze(idx_lon)[-1] if len(idx_lat) > 1: idx_lat = np.squeeze(idx_lat)[-1] return idx_lon, idx_lat def met_to_deg(x): # à préciser return x / 111000 def deg_to_met(x): # à préciser return x * 111000 def position_TC(jour, heure, path): nc = NetCDFFile(path) date_exact = jour * 24 + heure x = scipy.integrate.cumtrapz(vwind[date_exact, :, :], lon, axis=1, initial=0) y = scipy.integrate.cumtrapz(uwind[date_exact, :, :], lat, axis=0, initial=0) psi_faux = y - x latitude = np.array(nc.variables['latitude'][:]) longitude = np.array(nc.variables['longitude'][:]) # On trouve la vorticité max à cette date a = np.unravel_index(np.argmax(psi_faux), psi_faux.shape) # Puis on envoie les coordonnées print(f"(Lon,Lat) = {latitude[a[0]], longitude[a[1]]}") return latitude[a[0]], longitude[a[1]] def taille_TC(jour, heure, seuil, path): nc = NetCDFFile(path) date_exact = jour * 24 + heure # np.shape(vorticity) = (744,93,117) # np.shape(latitude) = (93,) # np.shape(longitude) = (117,) vorticity = np.array(nc.variables['vo'][:]) latitude = np.array(nc.variables['latitude'][:]) longitude = np.array(nc.variables['longitude'][:]) # print(longitude[80]) gives -74.0 # Limit longitude study up to -74.0 to the right to ignore high vorticity where there is no cyclone; can be observed on the .gif vo_max = np.unravel_index(np.argmax(vorticity[date_exact, :, 0:74]), vorticity[date_exact, :, 0:74].shape) lon_TC = vo_max[1] lat_TC = vo_max[0] s = seuil vorticity[vorticity < s] = 0 # Calculating min and max lon and lat # Hovering the latitude, fixing longitude of current position lat_vo_min = 0 # Initialising values lat_vo_max = 0 # Initialising values for i in range(93): if vorticity[ date_exact, i, lon_TC] > 0: # Taking the first non zero value index as the start point of the TC latitude lat_vo_min = i break if lat_vo_min == 0: # If lat_vo_min==0 it means that all values were below s lat_vo_max = 0 else: for i in range(lat_vo_min, 93): if vorticity[ date_exact, i, lon_TC] == 0: # Taking the last non zero value index as the end point of the TC latitude lat_vo_max = i - 1 break # Hovering the longitude, fixing latitude of current position lon_vo_min = 0 # Initialising values lon_vo_max = 0 # Initialising values for i in range(117): if vorticity[ date_exact, lat_TC, i] > 0: # Taking the first non zero valueindex as the start point of the TC longitude lon_vo_min = i break if lon_vo_min == 0: lon_vo_max = 0 else: for i in range(lon_vo_min, 93): if vorticity[ date_exact, lat_TC, i] == 0: # Taking the last non zero value index as the end point of the TC longitude lon_vo_max = i - 1 break # print(f"LAT : Min:{lat_vo_min},Max:{lat_vo_max}") # print(f"LON : Min{lon_vo_min},Max:{lon_vo_max}") # --------------------------------------------------------------------------------- lat1, lon1, lat2, lon2, R = lat_vo_min, lon_vo_min, lat_vo_max, lon_vo_max, 6373.0 # Distance between lon_vo_min and lon_vo_max, lat_TC constant coordinates_from = [lat_TC, lon1] coordinates_to = [lat_TC, lon2] distance_geopy = distance.distance(coordinates_from, coordinates_to).km distance_geopy_great_circle = distance.great_circle(coordinates_from, coordinates_to).km longueur_longitudinale = (distance_geopy + distance_geopy_great_circle) / 2 # print('Longueur longitudinale', longueur_longitudinale) # Distance between lat_vo_min and lat_vo_max, lon_TC constant coordinates_from = [lat1, lon_TC] coordinates_to = [lat2, lon_TC] distance_geopy = distance.distance(coordinates_from, coordinates_to).km distance_geopy_great_circle = distance.great_circle(coordinates_from, coordinates_to).km longueur_latitudinale = (distance_geopy + distance_geopy_great_circle) / 2 # print('Longueur latitudinale', longueur_latitudinale) # print('AIRE', longueur_latitudinale*longueur_longitudinale,'M2') return longueur_latitudinale * longueur_longitudinale def parametre_coriolis(latitude): latitude = np.radians(met_to_deg(latitude)) return 2 * 0.72921 * (10 ** (-4)) * np.sin(latitude) def get_fut_pos(x_TC, y_TC, psi): # On dépasse de +20, nécessaire car on balaie selon le rayon, faut sortir du carré univers = np.arange(x_TC, max(lon) + 2000000, 5000) psi_TC_r, psi_TC_xy = psi_TC_compute(x_TC, y_TC, univers) # psi selon r, et psi selon x;y psi_TC_on_psi0 = [-x / psi_TC_r[0] for x in psi_TC_r] # TROUVER K univers = (univers - min(univers)) study_r = int(np.round(0.05*int(np.where(np.isclose(max(psi_TC_on_psi0),psi_TC_on_psi0))[-1][-1]))) mymodel = np.poly1d(np.polyfit(univers[0:study_r], np.log(psi_TC_on_psi0[0:study_r]-min(psi_TC_on_psi0)+0.01), 1)) #faire avec exp myline = np.linspace(0, 700000, 500) L = myline[np.where(np.isclose(mymodel(myline), psi_TC_on_psi0[-1], atol=0.2))[-1][-1]] K = (L ** 2) / 4 myline = np.linspace(0, L, 500) psi_large = psi - psi_TC_xy f = np.expand_dims(lat, axis=1) * np.ones(np.shape(psi_large)) # paramètre de Coriolis f = parametre_coriolis(f) delta = lat[0] - lat[1] # le même mais négatif en longitude n = scipy.ndimage.laplace(psi_large) / (delta ** 2) + f # axis 0 = dérivée selon les lignes ; axis 1 = dérivée selon les colonnes # d'après leur définitino le - n'est pas là, mais jsp pk il le faut pour qu'on est le bon sesn du vent v_large = np.array(np.gradient(psi_large, lon, axis=1)) u_large = np.array(-1) * np.array(np.gradient(psi_large, lat, axis=0)) n_grad_y = np.array(np.gradient(n, lat, axis=0)) n_grad_x = np.array(np.gradient(n, lon, axis=1)) smooth = 5 u_large = smooth_array(u_large, lon, smooth, axis=1) v_large = smooth_array(v_large, lat, smooth, axis=0) smooth = 5 n_grad_y = smooth_array(n_grad_y, lon, smooth, axis=1) n_grad_x = smooth_array(n_grad_x, lat, smooth, axis=0) a = 1 # Pour dans x heures : t_1 = 12 * 60 * 60 dt = 1 * 60 * 60 C = 0.7156 nm = 1.2830 x_TC_fut = x_TC y_TC_fut = y_TC # A Faire : un Mask avec le TC, et faire une moyenne de u/v for i in range(0, t_1, int(np.round(dt))): TC_lat = np.radians(met_to_deg(y_TC_fut)) m = (C * (np.cos(TC_lat)) ** (-1)) * (np.tan(0.25 * (np.pi - 2 * TC_lat))) ** nm idx_x, idx_y = xy_to_indx_lonlat(x_TC_fut, y_TC_fut, lon, lat) Cx0 = a * u_large[idx_y, idx_x] - K * n_grad_y[idx_y, idx_x] # en m/s, normalement Cy0 = a * v_large[idx_y, idx_x] + K * n_grad_x[idx_y, idx_x] # en m/s, normalement x_TC_fut = x_TC_fut + Cx0 * dt#* m y_TC_fut = y_TC_fut + Cy0 * dt#* m print("dx", Cx0 * dt, a * u_large[idx_y, idx_x], - K * n_grad_y[idx_y, idx_x]) print("dy", Cy0 * dt, a * v_large[idx_y, idx_x], K * n_grad_x[idx_y, idx_x],m) #plt.subplot(2, 2, 1) #plot_array(psi, lon, lat) # plt.plot(met_to_deg(x_TC), met_to_deg(y_TC), ms=4, marker='o', markeredgecolor="green") #plt.subplot(2, 2, 2) #plt.plot(myline, np.exp(mymodel(myline))) #plt.plot(univers,psi_TC_on_psi0-min(psi_TC_on_psi0)+0.01) #plt.plot(univers,np.grandient(psi_TC_on_psi0,univers)) #plt.plot(univers, smooth_array(np.expand_dims(np.gradient(psi_TC_on_psi0),1),[1],2,axis=1)) # plot_array(psi_TC_xy, lon, lat) #plt.subplot(2, 2, 3) #plot_array(vorticity[t, :, :], lon, lat) # plt.plot(met_to_deg(x_TC), met_to_deg(y_TC), ms=10, marker='o', markeredgecolor="green") # plt.streamplot(met_to_deg(lon),np.flip(met_to_deg(lat)),u_large,v_large ) #plt.subplot(2, 2, 4) #plot_array(n_grad_y, lon, lat) #plt.plot(met_to_deg(x_TC), met_to_deg(y_TC), ms=10, marker='o', markeredgecolor="green") #plt.plot(met_to_deg(x_TC_fut), met_to_deg(y_TC_fut), ms=10, marker='o', markeredgecolor="red") #y_v, x_v = position_TC(jour, heure + 12, data_path) #plt.plot(x_v, y_v, ms=10, marker='x', markeredgecolor="yellow") plt.figure() #Le Cyclone circule le long des lignes plt.streamplot(met_to_deg(lon), met_to_deg(np.flip(lat)), np.flip(u_large, 0), np.flip(v_large, 0), density=5,linewidth=0.3,color=np.flip(psi_large,axis=0)) # plt.streamplot(met_to_deg(lon), met_to_deg(np.flip(lat)), np.flip(n_grad_x, 0), np.flip(n_grad_y, 0), # density=4, linewidth=0.3, color=np.flip(n, axis=0)) return x_TC_fut, y_TC_fut jour = 28 # Commence au jour zéro heure = 2 t = jour * 24 + heure data_path = 'D:/TT/UV/SY10/KATRINA.nc' nc = NetCDFFile(data_path) lat = nc.variables['latitude'][:] lon = nc.variables['longitude'][:] time = nc.variables['time'][:] uwind = nc.variables['u'][:] vwind = nc.variables['v'][:] vorticity = nc.variables['vo'][:] lon = deg_to_met(lon) lat = deg_to_met(lat) lons, lats = np.meshgrid(lon, lat) nc.close() psi = psi_compute(uwind, vwind, t) # psi c'est la stream function y_TC, x_TC = position_TC(jour, heure, data_path) x_TC = deg_to_met(x_TC) y_TC = deg_to_met(y_TC) # plot_array(psi, lon, lat) # plot_array(psi, lon, lat) # plt.streamplot(met_to_deg(lon), met_to_deg(np.flip(lat)), np.flip(uwind[t,:,:], 0), np.flip(vwind[t,:,:], 0), # density=5,linewidth=0.3,color=np.flip(psi, axis=0)) x_TC_fut, y_TC_fut = get_fut_pos(x_TC, y_TC, psi) # prévision de la position future du cyclone # x_TC_fut2, y_TC_fut2 = get_fut_pos(x_TC_fut, y_TC_fut, K, psi) # plt.plot(x_TC_fut2, y_TC_fut2, ms=10, marker='o', markeredgecolor="red") # plt.plot(univers+np.array(-x_TC), fit_k) # SF1_compute(298, -36.5, 8.1) # temperature ; d_speed ; âge # SF2_compute(54, 224) # humidité ; taille du cyclone plt.show()
Editor is loading...