Limit
unknown
latex
2 years ago
1.3 kB
9
Indexable
\documentclass{article} \usepackage{amsmath} \newcommand{\Lim}[1]{\raisebox{0.5ex}{{$\displaystyle \lim_{#1}\;$}}} \begin{document} Evaluate $\Lim{x\to 2^-}\frac{x-1+ \lfloor 1-x \rfloor}{|x^2 -7x+10|}$ \\\\ \begin{align*} & =\Lim{x\to 2^-} \frac{x-1+ \lfloor 1-x \rfloor}{|x^2 -7x+10|} \\\\ & =\Lim{x\to 2^-} \frac{x-1+ \lfloor 1-x \rfloor}{|(x-5)(x-2)|} \\\\ & =\Lim{x\to 2^-} \frac{x-1+ \lfloor 1-x \rfloor}{|(x-5)| |(x-2)|} \\\\ & =\Lim{x\to 2^-} \frac{x-1-1}{|(x-5)| |(x-2)|} \\\\ & =\Lim{x\to 2^-} \frac{x-1-1}{(-)(x-5)(-)(x-2)} \\\\ & =\Lim{x\to 2^-} \frac{x-2}{(-)(x-5)(-)(x-2)} \\\\ & =\Lim{x\to 2^-} \frac{1}{(-)(x-5)(-)} \\\\ & = \frac{1}{(-)(-3)(-)}=-\frac{1}{3} \end{align*} \begin{align*} \lfloor 1-x \rfloor = \[ \begin{cases} -2, & -2 \leq 1-x < -1 \Longleftrightarrow 2 < x \leq 3 \\ -1, & -1 \leq 1 -x <0 \Longleftrightarrow 1 < x \leq 2\\ 0, & 0 \leq 1-x < 1 \Longleftrightarrow 0 < x \leq 1 \end{cases} \] \end{align*} \begin{align*} |x-5| = \[ \begin{cases} x-5, & x-5 \geq 0 \Longleftrightarrow x \geq 5 \\ -(x-5), & x-5 < 0 \Longleftrightarrow x < 5 \end{cases} \] \end{align*} \begin{align*} |x-2| = \[ \begin{cases} x-2, & x-2 \geq 0 \Longleftrightarrow x \geq 2 \\ -(x-2), & x-2 < 0 \Longleftrightarrow x < 2 \end{cases} \] \end{align*} \end{document}
Editor is loading...
Leave a Comment