Untitled
import os import pandas as pd # List of participants and types participants = ["dkatalinic"] # Add more participants as needed types = ["standard", "slices", "snail"] # Add more types as needed # Dictionaries to store results average_wpm_map = {} average_ter_map = {} # Iterate through participants and types for participant in participants: for file_type in types: # Construct the file name file_name = f"{participant}_{file_type}.csv" # Check if the file exists if os.path.isfile(file_name): # Load the CSV file into a DataFrame data_frame = pd.read_csv(file_name) # Extract the 'WPM' column wpm_values = data_frame[' WPM'].tolist() # Calculate the average WPM average_wpm = sum(wpm_values) / len(wpm_values) # Extract the 'TER' column ter_values = data_frame[' TER'].tolist() # Calculate the average TER average_ter = sum(ter_values) / len(ter_values) # Create the key for the dictionaries key = f"{participant}_{file_type}" # Save the results to the dictionaries average_wpm_map[key] = average_wpm average_ter_map[key] = average_ter df = pd.DataFrame({ 'Type': [file_type for participant in participants for file_type in types], 'Average TER': [average_ter_map[f"{participant}_{file_type}"] for participant in participants for file_type in types], 'Average WPM': [average_wpm_map[f"{participant}_{file_type}"] for participant in participants for file_type in types] }) # Save the DataFrame to an Excel file without the MultiIndex excel_file_path = "average_results.xlsx" df.to_excel(excel_file_path, index=False) print(f"Excel file saved at: {excel_file_path}")
Leave a Comment