Untitled
unknown
plain_text
a year ago
7.0 kB
12
Indexable
!pip install -q tensorflow-recommenders
!pip install -q --upgrade tensorflow-datasets
import os
import tempfile
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
import tensorflow_recommenders as tfrs
plt.style.use('seaborn-whitegrid')
from google.colab import drive
drive.mount('/content/drive')
import pandas as pd
movies_metadata = pd.read_csv('/content/drive/My Drive/movies_metadata.csv')
ratings=pd.read_csv('/content/drive/My Drive/ratings.csv')
ratings = ratings[['userId', 'movieId','timestamp']].rename(columns={'movieId': 'movie_id', 'userId': 'user_id'})
movies_metadata = movies_metadata[['id', 'title']].rename(columns={'id': 'movie_id', 'title': 'movie_title'})
ratings['movie_id'] = ratings['movie_id'].astype(str)
movies_metadata['movie_id'] = movies_metadata['movie_id'].astype(str)
combined_dataset = pd.merge(ratings, movies_metadata, on='movie_id', how='inner')
combined_dataset= combined_dataset.sample(100_000,random_state=1)
import numpy as np
# Create a TensorFlow dataset
combined_dataset_tf = tf.data.Dataset.from_tensor_slices({
'user_id': combined_dataset['user_id'].astype(str).values,
'movie_title': combined_dataset['movie_title'].astype(str).values,
'timestamp': combined_dataset['timestamp'].values,
# 'genres': genres_encoded # This now should be an array with consistent dimensions
})
movies = combined_dataset_tf.map(lambda x: x["movie_title"])
timestamps = np.concatenate(list(combined_dataset_tf.map(lambda x: x["timestamp"]).batch(100)))
max_timestamp = timestamps.max()
min_timestamp = timestamps.min()
timestamp_buckets = np.linspace(
min_timestamp, max_timestamp, num=1000,
)
movie_titles = movies.batch(1_000)
user_ids = combined_dataset_tf.batch(1_000_000).map(lambda x: x["user_id"])
unique_movie_titles = np.unique(np.concatenate(list(movie_titles)))
unique_user_ids = np.unique(np.concatenate(list(user_ids)))
class UserModel(tf.keras.Model):
def __init__(self):
super().__init__()
self.user_embedding = tf.keras.Sequential([
tf.keras.layers.StringLookup(
vocabulary=unique_user_ids, mask_token=None),
tf.keras.layers.Embedding(len(unique_user_ids) + 1, 32),
])
self.timestamp_embedding = tf.keras.Sequential([
tf.keras.layers.Discretization(timestamp_buckets.tolist()),
tf.keras.layers.Embedding(len(timestamp_buckets) + 1, 32),
])
self.normalized_timestamp = tf.keras.layers.Normalization(
axis=None
)
self.normalized_timestamp.adapt(timestamps)
def call(self, inputs):
user_embeds = self.user_embedding(inputs["user_id"])
timestamp_embeds = self.timestamp_embedding(inputs["timestamp"])
normalized_time = tf.reshape(self.normalized_timestamp(inputs["timestamp"]), (-1, 1))
return tf.concat([
user_embeds,
timestamp_embeds,
normalized_time
], axis=1)
class QueryModel(tf.keras.Model):
"""Model for encoding user queries."""
def __init__(self, layer_sizes):
"""Model for encoding user queries.
Args:
layer_sizes:
A list of integers where the i-th entry represents the number of units
the i-th layer contains.
"""
super().__init__()
# We first use the user model for generating embeddings.
self.embedding_model = UserModel()
# Then construct the layers.
self.dense_layers = tf.keras.Sequential()
# Use the ReLU activation for all but the last layer.
for layer_size in layer_sizes[:-1]:
self.dense_layers.add(tf.keras.layers.Dense(layer_size, activation="relu"))
# No activation for the last layer.
for layer_size in layer_sizes[-1:]:
self.dense_layers.add(tf.keras.layers.Dense(layer_size))
def call(self, inputs):
feature_embedding = self.embedding_model(inputs)
return self.dense_layers(feature_embedding)
from typing import Dict, Text
class MovieModel(tf.keras.Model):
def __init__(self):
super().__init__()
max_tokens = 10_000
self.title_embedding = tf.keras.Sequential([
tf.keras.layers.StringLookup(
vocabulary=unique_movie_titles, mask_token=None),
tf.keras.layers.Embedding(len(unique_movie_titles) + 1, 32)
])
self.title_vectorizer = tf.keras.layers.TextVectorization(
max_tokens=max_tokens)
self.title_text_embedding = tf.keras.Sequential([
self.title_vectorizer,
tf.keras.layers.Embedding(max_tokens, 32, mask_zero=True),
tf.keras.layers.GlobalAveragePooling1D(),
])
# Adapt the title_vectorizer using the movie titles
self.title_vectorizer.adapt(movies)
def call(self, titles):
return tf.concat([
self.title_embedding(titles),
self.title_text_embedding(titles),
], axis=1)
class CandidateModel(tf.keras.Model):
def __init__(self, layer_sizes):
super().__init__()
self.embedding_model = MovieModel()
# Then construct the layers.
self.dense_layers = tf.keras.Sequential()
# Use the ReLU activation for all but the last layer.
for layer_size in layer_sizes[:-1]:
self.dense_layers.add(tf.keras.layers.Dense(layer_size, activation="relu"))
# No activation for the last layer.
for layer_size in layer_sizes[-1:]:
self.dense_layers.add(tf.keras.layers.Dense(layer_size))
def call(self, inputs):
feature_embedding = self.embedding_model(inputs)
return self.dense_layers(feature_embedding)
class MovielensModel(tfrs.models.Model):
def __init__(self, layer_sizes):
super().__init__()
self.query_model = QueryModel(layer_sizes)
self.candidate_model = CandidateModel(layer_sizes)
self.task = tfrs.tasks.Retrieval(
metrics=tfrs.metrics.FactorizedTopK(
candidates=movies.batch(128).map(self.candidate_model),
),
)
def compute_loss(self, features, training=False):
query_embeddings = self.query_model({
"user_id": features["user_id"],
"timestamp": features["timestamp"]
})
movie_embeddings = self.candidate_model(features["movie_title"])
return self.task(
query_embeddings, movie_embeddings, compute_metrics=not training)
tf.random.set_seed(1)
shuffled = combined_dataset_tf.shuffle(100_000, seed=1, reshuffle_each_iteration=False) #aici trb modificat pt mn!!
train = shuffled.take(80_000)
eval = shuffled.skip(80_000).take(10_000)
test = shuffled.skip(90_000).take(10_000)
cached_train = train.shuffle(100_000).batch(4096)
cached_train = train.batch(4096)
cached_eval = eval.batch(4096).cache()
cached_test = test.batch(4096).cache()
num_epochs = 3
model = MovielensModel([32])
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.1))
one_layer_history = model.fit(
cached_train,
validation_data=cached_test,
epochs=num_epochs)
accuracy = one_layer_history.history["val_factorized_top_k/top_100_categorical_accuracy"][-1]
print(f"Top-100 accuracy: {accuracy:.2f}.")Editor is loading...
Leave a Comment