Untitled

 avatar
unknown
plain_text
2 months ago
2.6 kB
4
Indexable
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_iris

iris = load_iris()
X = iris.data
y = iris.target
y = np.eye(3)[y]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

class NeuralNetwork:
    def __init__(self, input_size, hidden_size, output_size, learning_rate=0.01):
        self.learning_rate = learning_rate
        self.weights_input_hidden = np.random.rand(input_size, hidden_size)
        self.weights_hidden_output = np.random.rand(hidden_size, output_size)
        self.bias_hidden = np.random.rand(hidden_size)
        self.bias_output = np.random.rand(output_size)
    
    def sigmoid(self, x):
        return 1 / (1 + np.exp(-x))
    
    def sigmoid_derivative(self, x):
        return x * (1 - x)
    
    def forward(self, X):
        self.hidden_layer_input = np.dot(X, self.weights_input_hidden) + self.bias_hidden
        self.hidden_layer_output = self.sigmoid(self.hidden_layer_input)
        self.final_input = np.dot(self.hidden_layer_output, self.weights_hidden_output) + self.bias_output
        self.final_output = self.sigmoid(self.final_input)
        return self.final_output
    
    def backward(self, X, y, output):
        error = y - output
        d_output = error * self.sigmoid_derivative(output)
        error_hidden_layer = d_output.dot(self.weights_hidden_output.T)
        d_hidden_layer = error_hidden_layer * self.sigmoid_derivative(self.hidden_layer_output)
        
        self.weights_hidden_output += self.hidden_layer_output.T.dot(d_output) * self.learning_rate
        self.bias_output += np.sum(d_output, axis=0) * self.learning_rate
        self.bias_hidden += np.sum(d_hidden_layer, axis=0) * self.learning_rate
        
    def train(self, X, y, epochs):
        for epoch in range(epochs):
            output = self.forward(X)
            self.backward(X, y, output)
            
    def predict(self, X):
        output = self.forward(X)
        return np.argmax(output, axis=1)

input_size = X_train.shape[1]
hidden_size = 5
output_size = y_train.shape[1]
learning_rate = 0.01
epochs = 1000

nn = NeuralNetwork(input_size, hidden_size, output_size, learning_rate)
nn.train(X_train, y_train, epochs)

predictions = nn.predict(X_test)
y_test_labels = np.argmax(y_test, axis=1)

accuracy = np.mean(predictions == y_test_labels)
print(f'Accuracy: {accuracy * 100:.2f}%')
Editor is loading...
Leave a Comment