Untitled
unknown
plain_text
a year ago
2.6 kB
7
Indexable
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
y = iris.target
y = np.eye(3)[y]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
class NeuralNetwork:
def __init__(self, input_size, hidden_size, output_size, learning_rate=0.01):
self.learning_rate = learning_rate
self.weights_input_hidden = np.random.rand(input_size, hidden_size)
self.weights_hidden_output = np.random.rand(hidden_size, output_size)
self.bias_hidden = np.random.rand(hidden_size)
self.bias_output = np.random.rand(output_size)
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def sigmoid_derivative(self, x):
return x * (1 - x)
def forward(self, X):
self.hidden_layer_input = np.dot(X, self.weights_input_hidden) + self.bias_hidden
self.hidden_layer_output = self.sigmoid(self.hidden_layer_input)
self.final_input = np.dot(self.hidden_layer_output, self.weights_hidden_output) + self.bias_output
self.final_output = self.sigmoid(self.final_input)
return self.final_output
def backward(self, X, y, output):
error = y - output
d_output = error * self.sigmoid_derivative(output)
error_hidden_layer = d_output.dot(self.weights_hidden_output.T)
d_hidden_layer = error_hidden_layer * self.sigmoid_derivative(self.hidden_layer_output)
self.weights_hidden_output += self.hidden_layer_output.T.dot(d_output) * self.learning_rate
self.bias_output += np.sum(d_output, axis=0) * self.learning_rate
self.bias_hidden += np.sum(d_hidden_layer, axis=0) * self.learning_rate
def train(self, X, y, epochs):
for epoch in range(epochs):
output = self.forward(X)
self.backward(X, y, output)
def predict(self, X):
output = self.forward(X)
return np.argmax(output, axis=1)
input_size = X_train.shape[1]
hidden_size = 5
output_size = y_train.shape[1]
learning_rate = 0.01
epochs = 1000
nn = NeuralNetwork(input_size, hidden_size, output_size, learning_rate)
nn.train(X_train, y_train, epochs)
predictions = nn.predict(X_test)
y_test_labels = np.argmax(y_test, axis=1)
accuracy = np.mean(predictions == y_test_labels)
print(f'Accuracy: {accuracy * 100:.2f}%')
Editor is loading...
Leave a Comment