ML
Disimport zipfile import csv import os # Function to read data from a CSV file with specified encoding def read_data(filename): with open(filename, 'r', encoding='utf-8') as csvfile: datareader = csv.reader(csvfile, delimiter=',') traindata = [] for row in datareader: traindata.append(row) return traindata # Function to check if a hypothesis is consistent with a data instance def isConsistent(h, d): if len(h) != len(d) - 1: print('Number of attributes are not the same in hypothesis.') return False else: matched = 0 for i in range(len(h)): if h[i] == d[i] or h[i] == 'any': matched += 1 return matched == len(h) # Function to make the hypothesis consistent with a data instance def makeConsistent(h, d): for i in range(len(h)): if h[i] == 'phi': h[i] = d[i] elif h[i] != d[i]: h[i] = 'any' return h # Path to the zip file zip_file_path = r'C:\Users\21BCE8157\Downloads\GlobalLandTemperaturesByCity.csv.zip' # Path where the extracted files should be stored extract_to_path = r'C:\Users\21BCE8157\Downloads' # Extract the zip file with zipfile.ZipFile(zip_file_path, 'r') as zip_ref: zip_ref.extractall(extract_to_path) # Assuming the extracted file is named 'GlobalLandTemperaturesByCity.csv' csv_file_name = 'GlobalLandTemperaturesByCity.csv' csv_file_path = os.path.join(extract_to_path, csv_file_name) # Initialize the most specific hypothesis h = ['phi', 'phi', 'phi', 'phi', 'phi', 'phi'] # Read data data = read_data(csv_file_path) print('Begin: Hypothesis:', h) for d in data: if d[-1] == 'Yes': # Assuming the last column is the class label if isConsistent(h, d): pass else: h = makeConsistent(h, d) print('Training data:', d) print('Updated Hypothesis:', h) print() print('---') print('Maximally specific hypothesis: End:', h)
Leave a Comment