Untitled
unknown
plain_text
2 years ago
1.2 kB
4
Indexable
from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.inception_v3 import preprocess_input import numpy as np model = load_model('/Analytics/venv/Jup/CAPE_Case_Management_PDF_Invoicing/Fine_tuned_invoice_model_v2_dec5.h5') ## Preprocessing the image as per requirement def preprocess_image(img_path): img = image.load_img(img_path, target_size=(299, 299)) img_array = image.img_to_array(img) img_array = np.expand_dims(img_array, axis=0) img_array = preprocess_input(img_array) return img_array ## Making predictions img_path = '/Analytics/venv/Jup/CAPE_Case_Management_PDF_Invoicing/Data/images/Test_dataset_images/invoice/Email_28112023053610_ag_13049100_1007.png' preprocessed_img = preprocess_image(img_path) # Make a prediction prediction = model.predict(preprocessed_img) # If it's binary classification, you can use a threshold to determine the class threshold = 0.5 # Adjust as needed predicted_class = 0 if prediction < threshold else 1 # Print the prediction print(f"Prediction: {predicted_class} (0: Invoice, 1: Non-Invoice)")
Editor is loading...
Leave a Comment