Export_sequence_image
unknown
plain_text
2 years ago
1.9 kB
5
Indexable
import ee import os # Authenticate to your Earth Engine account ee.Authenticate() ee.Initialize(project='ee-davari2023') # Define the Area of Interest (AOI) as a geometry (e.g., a point) aoi = ee.Geometry.Point([-122.08412, 37.42189]) #ee.Geometry.Point([-7.547798, 38.653770]).buffer(1000) # Longitude, Latitude # Define the time period of interest start_date = '2022-06-01' end_date = '2022-06-30' # Create an ImageCollection based on your criteria ##'COPERNICUS/S2 refers to the Sentinel-2 satellite imagery dataset image_collection = ee.ImageCollection('COPERNICUS/S2') \ .filterBounds(aoi) \ .filterDate(start_date, end_date) \ .sort('CLOUDY_PIXEL_PERCENTAGE') # Specify the folder where you want to save the images download_folder = 'images_Portugal_1' # Create the download folder if it doesn't exist os.makedirs(download_folder, exist_ok=True) # Loop through the images in the ImageCollection and download them image_list = image_collection.toList(image_collection.size()) for i in range(2): #image_list.size().getInfo() image = ee.Image(image_list.get(i)) image_id = image.id().getInfo() #image = image.toUint16() name = image.get('system:index').getInfo() #image_filename = os.path.join(download_folder, f'image_{image_id}.png') # Export the image to your local folder ## Bands 4, 3, and 2 are often used for RGB images task = ee.batch.Export.image.toDrive(image=image.select(['B4', 'B3', 'B2']), description=image_id, folder=download_folder, scale= 30) # Check the task status task_status = task.status() has_retries = task_status["state"] == "FAILED" and task_status["error_message"] is not None # Print the result if has_retries: print("The task has been retried.") else: print("The task has not been retried.") task.start() print(i)
Editor is loading...