Untitled
# Step 1: Import necessary libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn import metrics # Step 2: Create a DataFrame from the dataset data = {'Hours Studied': [2, 3, 4, 5, 6], 'Test Score': [65, 75, 82, 88, 95]} df = pd.DataFrame(data) # Step 3: Visualization plt.scatter(df['Hours Studied'], df['Test Score']) plt.title('Hours Studied vs Test Score') plt.xlabel('Hours Studied') plt.ylabel('Test Score') plt.show() # Step 4: Model Training X = df['Hours Studied'].values.reshape(-1, 1) y = df['Test Score'].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) model = LinearRegression() model.fit(X_train, y_train) # Step 5: Model Evaluation y_pred = model.predict(X_test) mse = metrics.mean_squared_error(y_test, y_pred) print(f'Mean Squared Error: {mse}') # Step 6: Prediction new_hours = np.array([7, 8]).reshape(-1, 1) predicted_scores = model.predict(new_hours) print(f'Predicted Scores for 7 and 8 hours: {predicted_scores}')
Leave a Comment