Untitled
user_0159819
plain_text
2 years ago
1.4 kB
6
Indexable
# Identifying the unique SDT Types in the data
sdt_types = data['SDT Type'].unique()
# Dictionary to store model results for each SDT Type
sdt_type_optimizations = {}
# Analyzing each SDT Type separately
for sdt_type in sdt_types:
# Filter data for the current SDT Type
sdt_type_data = data[data['SDT Type'] == sdt_type]
# Preparing data for regression
X_sdt = sdt_type_data[['IN Gross', 'Out Tare (ton)']]
y_sdt = sdt_type_data['Payload Netto (ton)']
# Creating and fitting the linear regression model
model_sdt = LinearRegression()
model_sdt.fit(X_sdt, y_sdt)
# Coefficients and intercept
coefficients_sdt = model_sdt.coef_
intercept_sdt = model_sdt.intercept_
# Finding the maximum IN Gross and minimum Out Tare in the data for the current SDT Type
max_in_gross = X_sdt['IN Gross'].max()
min_out_tare = X_sdt['Out Tare (ton)'].min()
# Calculating the maximum possible Payload Netto using the model
# Payload Netto = Intercept + Coef_IN_Gross * IN_Gross + Coef_Out_Tare * Out_Tare
max_payload_netto = intercept_sdt + coefficients_sdt[0] * max_in_gross + coefficients_sdt[1] * min_out_tare
# Storing the results
sdt_type_optimizations[sdt_type] = {
'Max IN Gross': max_in_gross,
'Min Out Tare': min_out_tare,
'Max Payload Netto': max_payload_netto
}
sdt_type_optimizations
Editor is loading...
Leave a Comment