Untitled
user_0159819
plain_text
2 years ago
1.4 kB
5
Indexable
# Identifying the unique SDT Types in the data sdt_types = data['SDT Type'].unique() # Dictionary to store model results for each SDT Type sdt_type_optimizations = {} # Analyzing each SDT Type separately for sdt_type in sdt_types: # Filter data for the current SDT Type sdt_type_data = data[data['SDT Type'] == sdt_type] # Preparing data for regression X_sdt = sdt_type_data[['IN Gross', 'Out Tare (ton)']] y_sdt = sdt_type_data['Payload Netto (ton)'] # Creating and fitting the linear regression model model_sdt = LinearRegression() model_sdt.fit(X_sdt, y_sdt) # Coefficients and intercept coefficients_sdt = model_sdt.coef_ intercept_sdt = model_sdt.intercept_ # Finding the maximum IN Gross and minimum Out Tare in the data for the current SDT Type max_in_gross = X_sdt['IN Gross'].max() min_out_tare = X_sdt['Out Tare (ton)'].min() # Calculating the maximum possible Payload Netto using the model # Payload Netto = Intercept + Coef_IN_Gross * IN_Gross + Coef_Out_Tare * Out_Tare max_payload_netto = intercept_sdt + coefficients_sdt[0] * max_in_gross + coefficients_sdt[1] * min_out_tare # Storing the results sdt_type_optimizations[sdt_type] = { 'Max IN Gross': max_in_gross, 'Min Out Tare': min_out_tare, 'Max Payload Netto': max_payload_netto } sdt_type_optimizations
Editor is loading...
Leave a Comment