Untitled
unknown
python
3 years ago
721 B
7
Indexable
import numpy
# Local Neighbors Measure
def LNM(word: str, topn=10):
word_1960 = e_1960.wv[word]
word_2010 = e_2010.wv[word]
neighbors = []
# adding neighbors of 1960
neighbors.extend([w[0] for w in e_1960.wv.most_similar(positive=[word_1960], topn=topn)])
# adding neighbors of 2010
neighbors.extend([w[0] for w in e_2010.wv.most_similar(positive=[word_2010], topn=topn)])
# word similarity with each neighbor
sim_1960 = []
sim_2010 = []
for nb in neighbors:
sim_1960.append(1-cosine(e_1960.wv[nb], word_1960))
sim_2010.append(1-cosine(e_1960.wv[nb], word_2010))
# calculate and return the similarity between the two vectors
return 1 - cosine(np.array(sim_1960), np.array(sim_2010))Editor is loading...