Untitled
unknown
plain_text
a year ago
1.3 kB
7
Indexable
import tensorflow as tf from tensorflow.keras import layers, models import numpy as np import matplotlib.pyplot as plt (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 y_train = tf.keras.utils.to_categorical(y_train, 10) y_test = tf.keras.utils.to_categorical(y_test, 10) model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(10, activation='softmax')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) history = model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test)) test_loss, test_acc = model.evaluate(x_test, y_test, verbose=2) print(f'Test accuracy: {test_acc}') plt.plot(history.history['accuracy'], label='accuracy') plt.plot(history.history['val_accuracy'], label = 'val_accuracy') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.ylim([0, 1]) plt.legend(loc='lower right') plt.show() model.save('cnn_image_classifier.h5')
Editor is loading...
Leave a Comment