Untitled
unknown
plain_text
a year ago
2.7 kB
1
Indexable
Never
import os import numpy as np from sqlalchemy import create_engine from urllib.parse import quote ############ ## Config ## ############ class ParamConfig: global path_main path_main = '//IPE//ML//' def __init__(self,prediction,subject,Forcasting): #global path_main #Pandas config self.file_delimiter = "|" self.encoding = "ISO-8859-1" self.error_bad_lines = False self.engine = "" self.tenant_id = "DEMO" self.data_path =path_main + '//Data//' self.data_file_name = 'sourcing_qa.csv' self.context_data = 'df_act_context.joblib' self.engine_train_data = create_engine('postgresql://ml_user:%s@10.32.77.4:5432/tap'%quote('asdfghjkloip'),encoding="utf-8") #self.engine_train_data = create_engine('postgresql://ml_user:Go@*1961##36@10.72.209.36:5432/tap',encoding="utf-8") self.system_path =path_main self.archive_path =path_main + '//Archive//' self.tenant_path =path_main + 'Axys//' self.global_vector_name = 'glove.50d.txt' #pickle Folder path self.model_folder_name =path_main + '//Model//' self.model_tfidf = "tfidf.joblib" self.model_tf_count = "tf_count.joblib" self.model_tfidf_vector = "tfidf_vector.joblib" self.model_tf_count_vector = "tf_countvector.joblib" #self.daily_tfidf_vector = "Daily_tfidf.joblib" #self.daily_tf_count_vector = "Daily_tf_count.joblib" self.raw_data = "raw_data.joblib" self.req_cols = ['event_id','event_type','event_start_date','event_status','event_title'] self.daily_req_cols = ['event_id','event_type','event_start_date','event_status','event_title','clean_text_event_title'] self.target_column = 'event_title' self.noun_column ='Noun' self.model_matching_data_train = 'unique_train_data_matrix.joblib' self.glove_vector_dict = 'glove_vector_dict.joblib' self.engine_ipe = create_engine('postgresql://analytics_user:%s@10.32.77.218:5432/tap_ods'%quote('adgjkkjb'),encoding="utf-8") #Threshold_config self.fuzzy_threshold = 75 self.tf_threshold = 0.38 self.max_reccom = 10 ########################### ## initialize a param config config = ParamConfig(prediction=True,subject='Event Sourcing',Forcasting="Event Sourcing")